Savitribai Phule Pune University, Pune

Maharashtra, India

Faculty of Science and Technology

National Education Policy (NEP)-2020 Compliant Curriculum

SE - Second Year Engineering (2024 Pattern) in

AUTOMATION & ROBOTICS ENGINEERING

(With effect from Academic Year 2025-26)

Nomenclature	3
Preface by Board of Studies	4
Program Educational Objectives	5
Program Outcomes	6
Knowledge and Attitude Profile (WK)	7
General Rules	8
Curriculum Structure - Semester III	10
Curriculum Structure - Semester IV	11
Semester III Courses	12
PCC201AUR : Materials and Machine Elements	14
PCC202AUR : Industrial Electronics & Controls	18
PCC203AUR : Manufacturing Technology	22
PCC204AUR: Material Testing and Characterization Laboratory	25
MDM221AUR: Engineering Mathematics-III	28
MDM222AUR: Industrial Electronics & Controls Laboratory	31
VSE231AUR: Workshop Practices	34
HSSM232AUR: Entrepreneurship Development and Innovation	37
VEC233AUR: Universal Human Values	41
CEP241AUR: Community Engagement activity or Field Project	46
Semester IV Courses	49
PCC251AUR: Principles of Robotics	50
PCC252AUR: Kinematics of Machines	54
PCC253AUR: Electric Drives for Automation Systems	58
PCC254AUR: Robots & Drive System Laboratory	62
PCC255AUR: Kinematics of Machines Laboratory	66
MDM271AUR: Artificial Intelligence and Machine Learning	70
VSE281AUR: Product Develoment Laboratory	73
VEC282AUR: Data Science & Artificial Intelligence Laboratory	76
VEC283AUR: Modern Indian Langauge: 02	79
HSSM284AUR: Engineering Economics & Financial Management	81
VEC285AUR: Environmental Science and Sustainable Development	84
Task Force for Curriculum Design and Development	87

Nomenclature

AEC	Ability Enhancement Courses
AICTE	All India Council for Technical Education
AUR	Automation & Robotics Engineering
CO	Course Outcome
CEP	Community Engagement Project
CCE	Comprehensive Continuous Evaluation
HSSM	Humanities, Social Science, and Management
MDM	Multidisciplinary Minor
MEC	Mechanical Engineering
MOOC	Massive Open Online Course
NPTEL	National Programme on Technology Enhanced Learning
OEL	Open Elective
PCC	Program Core Course
PEO	Program Educational Objectives
PSO	Program Specific Objectives
SWAYAM	Study Webs of Active-learning for Young Aspiring Minds
UGC	University Grants Commission
VEC	Value Education Course
VSE	Vocational Skill Course
WK	Knowledge and Attitude Profile

Preface by Board of Studies

Dear Students and Teachers,

We, the members of the Board of Studies - Mechanical, Automobile and Automation & Robotics Engineering, are very happy to present the Second Year Automation & Robotics Engineering syllabus, effective from the Academic Year 2025-26 (2024 Pattern). We are confident that you will find this syllabus both interesting and challenging. The present curriculum will be implemented for Second Year Engineering from the academic year 2025-26, and it will be subsequently extended to the Third and Final Years in the academic years 2026-27 and 2027-28, respectively.

Automation & Robotics Engineering is one of the most sought-after branches among engineering students, which necessitates continuous revision and up gradation of the syllabus. Automation & Robotics Engineering is a dynamic discipline that integrates principles from core engineering fields and supports innovation across manufacturing, design, energy, materials, and automation. This curriculum is designed to provide students with a comprehensive understanding of the fundamentals, emerging technologies, and practical applications in Automation & Robotics Engineering, while also equipping them to meet the demands of a rapidly evolving industry.

The revised syllabus aligns with the vision of NEP-2020, and conforms to the frameworks set by Savitribai Phule Pune University, AICTE New Delhi, UGC, and various accreditation agencies. It takes into account recent technological developments, innovations, and industry needs to ensure students are well prepared for professional challenges.

Wherever applicable, additional learning resources such as NPTEL and SWAYAM links are provided at the end of each course. Students are encouraged to utilize these platforms for self-learning, engage in online courses, and undertake additional projects to enhance their knowledge and skill set. On successful completion, they are advised to submit their course certifications, which will further support and enrich their academic growth.

This curriculum is the result of collaborative efforts involving academic experts, industry professionals, and alumni to ensure relevance and excellence. It is designed not only to meet current industry expectations but also to prepare students for higher studies, research, and entrepreneurial ventures in the field of Automation & Robotics Engineering.

We hope this curriculum inspires students to become technically competent professionals, responsible citizens, and contributors to the technological and sustainable advancement of society.

Dr. Pradeep A. Patil Chairman, Board of Studies - Mechanical, Automobile and Automation & Robotics Engineering

Department of Automation & Robotics Engineering

Program Educational Outcomes (PEO)

Program Educational Objectives (PEOs) are broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve.

- **PEO1:** The graduates will possess an ability to work in diversified fields along with team work and leadership qualities.
- **PEO2**: The graduates will have successful career with strong technical, research & professional skills.
- **PEO3:** The graduates will continue to learn and to adapt in a society of constantly evolving technological environment.

Program Specific Outcomes (PSO)

Program Specific Outcomes (PSOs) define the specific skills, knowledge, and abilities that students should acquire within a particular program of study at the time of graduation. PSOs are distinct from broader Program Outcomes (POs), which represent general graduate attributes.

- **PSO1:** Design and develop robotic systems from concept to realization for diverse applications by applying analytical thinking, logical reasoning, and problem-solving skills.
- **PSO2:** Develop the AI-powered cutting-edge technologies to create innovative and sustainable automation solutions for industrial and societal needs.
- **PSO3:** Exhibit domain expertise through impactful research in robotics, control systems, and autonomous technologies to solve real-world problems in sectors such as manufacturing, healthcare, and intelligent systems.

Programme Outcomes (PO)

Program Outcomes are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, attitude and behaviour that students acquire through the program.

On successful completion of B.E. in Automation & Robotics, graduating students/graduates will be able to:

PO No.	Title	Program Outcome Description
PO1	Engineering Knowledge	Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop the solution of complex engineering problems.
PO2	Problem Analysis	Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)
PO3	Design / Development of Solutions	Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for public health and safety, whole-life cost, net zero carbon, culture, society and environment. (WK5)
PO4	Conduct Investigations of Complex Problems	Conduct investigations of complex engineering problems using research- based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8)
PO5	Engineering Tool Usage	Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling, recognizing their limitations to solve complex engineering problems. (WK2 and WK6)
PO6	The Engineer and The World	Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7)
PO7	Ethics	Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)
PO8	Individual and Collaborative Team Work	Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
PO9	Communication	Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences.
PO10	Project Management and Finance	Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects in multidisciplinary environments.
PO11	Life-Long Learning	Recognize the need for, and have the preparation and ability for: (i) independent and life-long learning, (ii) adaptability to new and emerging technologies, and (iii) critical thinking in the broadest context of technological change. (WK8)

Knowledge and Attitude Profile (WK)

A Knowledge and Attitude Profile (KAP), often represented as WK (Knowledge and Attitude Profile) in some contexts, is a framework or assessment tool used to evaluate an individual's knowledge and attitudes related to a specific area, topic, or domain.

WK1	A systematic, theory-based understanding of the natural sciences
	applicable to the discipline and awareness of relevant social
	sciences.
WK2	Conceptually-based mathematics, numerical analysis, data analysis,
	statistics and formal aspects of computer and information science to
	support detailed analysis and modelling applicable to the discipline.
WK3	A systematic, theory-based formulation of engineering
	fundamentals required in the engineering discipline.
WK4	Engineering specialist knowledge that provides theoretical
	frameworks and bodies of knowledge for the accepted practice
	areas in the engineering discipline; much is at the forefront of the
	discipline.
WK5	Knowledge, including efficient resource use, environmental
	impacts, whole-life cost, re-use of resources, net zero carbon, and
	similar concepts, that supports engineering design and operations
	in a practice area.
WK6	Knowledge of engineering practice (technology) in the practice
	areas in the engineering discipline.
WK7	Knowledge of the role of engineering in society and identified
	issues in engineering practice in the discipline, such as the
	professional responsibility of an engineer to public safety and
	sustainable development.
WK8	Engagement with selected knowledge in the current research
	literature of the discipline, awareness of the power of critical
	thinking and creative approaches to evaluate emerging issues.
WK9	Ethics, inclusive behavior and conduct. Knowledge of professional
	ethics, responsibilities, and norms of engineering practice.
	Awareness of the need for diversity by reason of ethnicity, gender,
	age, physical ability etc. with mutual understanding and respect,
	and of inclusive attitudes.

Reference: Self-Assessment Report (SAR) FormatUndergraduate Engineering Programs Graduate Attributes and Professional Competencies Version 4.0 (GAPC V4.0) - (August 2024) Page 55-56

Term	Definition
Course Outcomes (COs)	Course Outcomes are narrower statements that describe what students are expected to know and be able to do at the end of each course. These relate to the skills, knowledge, and behavior that students acquire throughout the course.
Assessment	Assessment is one or more processes, carried out by the institution, that identify, collect, and prepare data to evaluate the achievement of Program Educational Objectives (PEOs) and Program Outcomes (POs).
Evaluation	Evaluation is one or more processes, performed by the Evaluation Team , to interpret the data and evidence gathered through assessment practices. It determines how well PEOs or POs are being achieved, and informs decisions for improvement.

General Rules and Guidelines

Assessment and Evaluation:

Assessment and Eval 1. Comprehensive Co 2. End-Semester Exa	luation shall be conducted in two parts: ontinuous Evaluation (CCE) umination (ESE)	
Component	Description	Marks
Comprehensive Continuous Evaluation (CCE)	Conducted at institute level, covering all Units of the syllabus. The design and mark allocation follow the Continuous Assessment Sheet structure.	15 to 35
End-Semester Examination (ESE)	Conducted at university level, typically covering the entire syllabus through summative examination.	70
	Total Marks per Subject	100

A) <u>Comprehensive Continuous Evaluation (CCE)</u>

To design a Comprehensive Continuous Evaluation (CCE) scheme for a theory subject of 30 marks with the

specified parameters, the allocation of marks and the structure can be as per continuous assessment sheet;

	Savitribai Phule Pune University																					
	Board of Studies (Mechanical and Automobile Engineering)																					
	Comprehensive Continous Evaluation																					
	Class: SE A Subject: Fluid Mechanics																					
	Unit 1 Unit 2 Unit 2 Unit 4 Unit 5 Cumulative Sum Distribution																					
			Un	It 1	Un	It 2	Un	nt 3	Un	It 4	Un	It 5						JISTI	outio	n		
Exam Seat No.	Roll No.	Name of Student	Field A ctivity	Quiz	Field Activity	Quiz	Field Activity	Quiz	Field A ctivity	Quiz	Field Activity	Quiz	Field Activity	Quiz	Internal Test	nternal Test ttendance		Quiz	Internal Test	Attendance	Marks obtained out	
			A	в	С	D	E	F	G	н	T	J	SUM(A+C+E+G+I) SUM(B+D+F+H+J)									
			10	10	10	10	10	10	10	10	10	10	50 50 5		50	100	15	5	5	5	30	
S9970160753	2020	AMOGH M SHINDE	8	8	8	8	8	8	8	8	8	8	40 40		40	75	12	4	4	3.75	23.75	

Figure 1 Template Comprehensive Continuous Evaluation (CCE), <u>Click here</u> for excel Template

Field Activities / Home Assignments

Field activities and home assignments are essential components of experiential learning. Under this head, course projects, industrial visits, and guest lectures are to be incorporated. For each unit, one such activity should be designed and executed to reinforce theoretical learning through practical exposure.

1. Course Projects

Course Projects should be framed based on real-world problems relevant to the subject. Each course project must be communicated through one of the following modes. It is recommended to complete all the communication modes across different course projects:

- Poster Presentation
- PowerPoint Presentation
- Model Making
- Field or Survey Report with Oral Presentation (e.g., case study)
- Submission of Digital Content (e.g. Video Summary)

To evaluate these field activities, **assessment rubrics** should be designed. The rubrics should include criteria such as clarity, innovation, subject relevance, presentation skills, and technical content.

Note: Part of work of any co-curricular activities (relevant to subject contents) like national level project competitions, club activities, paper presentations, startup activities can be accepted as a course projects.

2. Industrial Visit

An industrial visit should be planned in alignment with the subject's scope and should particularly address advancements in the respective field. The purpose is to provide students exposure to actual engineering practices and systems.

Assessment of industrial visits should be carried out using any of the following tools:

- Quiz (based on the visit)
- Interactive video or oral discussion
- Submission of a detailed visit report
- 3. Guest Lectures

Guest lectures should be relevant to the course and highlight advanced topics or recent trends in the field. Subject experts from academia or industry may be invited.

Assessment methods for guest lectures may include:

- Quiz conducted post-lecture
- Attendance monitoring
- Evaluation of attentiveness and participation

Rubrics can be developed, if possible, to objectively assess student involvement in guest lectures.

4. Quiz

Unit-wise quizzes should be planned and can be conducted either **online** (via LMS, Google Forms) or **offline**. Each quiz should include a **pool of 20 questions**, from which **students are required to attempt any 10**. The quizzes should be diversified across the following question types:

- Simple Multiple Choice Questions (MCQs)
- Numerical MCQs
- Image-based Questions
- Match the Following
- Fill in the Blanks

• Drag and Drop (using images or words)

This variety ensures the assessment caters to different cognitive skills and learning styles.

5. Internal Tests

Two major internal tests should be conducted as follows:

- 1. Midterm Examination: This should cover Unit I and Unit II, and should include questions targeting Bloom's Taxonomy Levels 2, 3, and 4 (UNDERSTAND, APPLY, and ANALYZE).
- 2. End term Examination: This should cover the remaining units and should also include questions mapped to BL Levels 2, 3, and 4.

B) End-Semester Examination (ESE)

• Detailed Scheme for 70 Marks:

- Unit-Wise Allocation (14 Marks per Unit): Each unit will have a combination of questions designed to assess different cognitive levels.
- By following this scheme, you can ensure a comprehensive and fair assessment of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.

• Detailed Scheme for 35 Marks:

- Unit-Wise Allocation (08 Marks for Unit 1, 09 Marks for Unit 2, Unit 3 and Unit 4): Each unit will have a combination of questions designed to assess different cognitive levels.
- By following this scheme, you can ensure a comprehensive and fair assessment of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.

Curriculum Structure - Semester III NEP 2020 Compliant Curriculum Structure Second Year Engineering (2024 Pattern) - Automation & Robotics Engineering

			Leve	1 5.0												
			Teaching Scheme (Hr/week)			Examination Scheme and Marks							Credit			
Course Code	Course Type	Course Name	Theory	Practical	Tutorial	CCE	End- Semester	Term Work	Practical	Oral	Total	Theory	Practical	Tutorial	Total	
PCC201AUR	Major Course-1	Materials and Machine Elements	3			30	70				100	3	-	-	3	
PCC202AUR	Major Course-2	Industrial Electronics & Controls	3			30	70				100	3	-	-	3	
PCC203AUR	Major Course-3	Manufacturing Technology	3			30	70				100	3	-	-	3	
PCC204AUR	Major Course-3A	Material Testing and Characterisation Laboratory		2					50		50	0	1	-	1	
MDM221AUR	Multidisiplinary Course-1	Engineering Mathematics - III	3			30	70				100	3	-	-	3	
MDM222AUR	Multidisiplinary Course-1A	Industrial Electronics & Controls Laboratory		2					50		50	0	1	I	1	
	Open Elective-I	Open Elective-I	2			15	35				50	2	-	-	2	
VSE231AUR	Vocational Skill Course	Workshop Practices		2					25		25	0	1	-	1	
HSSM232AUR	Enterpreneurship/ Management course	Enterpreneurship Development and Innovation	1			25					25	1	-	-	1	
VEC233AUR	Value Education Course	Universal Human Values	2			15	35				50	2	-	-	2	
CEP241AUR	Comunity Engagement Project	Community Enagagement activity / Field Project		4				25		25	50	0	2	-	2	
		Total =	17	10	-	175	350	25	125	25	700	17	5	-	22	

*CCE: Comprehensive Continuous Evaluation

<u>Note</u>: Students can opt for Open Electives offered by different faculties such as Arts, Science, Commerce, Management, Humanities, or Inter-disciplinary studies.

• Open Elective I:

Students may choose courses like Financial Accounting, Digital Finance, or Digital Marketing from Commerce and Management faculty.

Curriculum Structure - Semester IV NEP 2020 Compliant Curriculum Structure Second Year Engineering (2024 Pattern) - Automation & Robotics Engineering

			Leve	1 5.0												
			Teaching Scheme (Hr/week)			Examination Scheme and Marks							Credit			
Course Code	Course Type	Course Name		Practical	Tutorial	CCE	End- Semester	Term Work	Practical	Oral	Total	Theory	Practical	Tutorial	Total	
PCC251AUR	Major Course-4	Principles of Robotics	3			30	70				100	3	-	-	3	
PCC252AUR	Major Course-5	Kinematics of Machines	3			30	70				100	3	-	-	3	
PCC253AUR	Major Course-6	Electric Drives for Automation Systems	3			30	70				100	3	-	-	3	
PCC254AUR	Major Course-4A	Robots & Drive System Laboratory		2					25		25	0	1	-	1	
PCC255AUR	Major Course-6A	Kinematics of Machines Laboratory		2					25		25	0	1	-	1	
MDM271AUR	Multidisiplinary Course-2	Artificial Intelligence & Machine Learning	2			50					50	2	-	-	2	
	Open Elective-II	Open Elective-II	2			15	35				50	2	-	-	2	
VSE281AUR	Vocational & Skill Enhancement Course	Product Development Laboratory		2					50		50	0	1	-	1	
VSE282AUR	Vocational & Skill Enhancement Course	Data Science & Artificial Intelligence Laboratory		2					50		50	0	1	-	1	
AEC283AUR	Ability Enhancement Course	Modern Indian Language: 02		2	1	15	35				50	0	1	1	2	
HSSM284AUR	Enterpreneurship/ Management course	Engineering Economics and Financial Management	1			50					50	1	-	-	1	
VEC285AUR	Value Education Course	Environmental Science and Sustaibale Development	2			15	35				50	2	-	-	2	
		Total =	16	10	1	235	315	-	150	-	700	16	5	1	22	

*CCE: Comprehensive Continuous Evaluation

<u>Note</u>: Students can opt for Open Electives offered by different faculties such as Arts, Science, Commerce, Management, Humanities, or Inter-disciplinary studies.

• Open Elective II:

Students may choose courses like Project Management, Business Analytics, or Financial Management can be opted from Onterdisciplinary Studies, Commerce and Management faculties, respectively.

Savitribai Phule Pune University, Pune

Maharashtra, India

SE - Automation & Robotics Engineering

2024 Pattern

Semester III Courses

With effect from Academic Year 2025-26

Savitribai Ph Second Vear of Automation &	ile Pune Ur Robotics E	niversity ngineering (2024	Pattern)				
PCC201AUR: Mater	ials and Ma	achine Elements					
Teaching Scheme	Credit	Examination Scheme					
Theory: 03 Hours/Week	3 CCE:		30 Marks				
Practical: NA	3	End-Semester:	70 Marks				
 Prerequisite Courses, if any: Engineering Mathematics – I, II Fundamentals of Programming Language Programming & Problem Solving Course Objectives: To impart fundamental knowledge of material To explain the material selection process To acquire basic knowledge of stress, strain To draw Shear Force and Bending Moment To solve problems of Torsional shear stress Course Outcomes: After successful completion of the course, learners CO1. COMPARE crystal structures and ASSESS di CO2. SELECT appropriate materials for various app CO3. DRAW Shear force and bending moment diag CO4. COMPUTE the slope & deflection, bending structures 	al science and e due to various t Diagram for tra for shaft will be able t ferent lattice pa lications ram for various resses and shea	engineering types of loading nsverse loading o: arameters types of transverse load r stresses on a beam.	ding and support.				
COS. CALCULATE torsional shear stress in shart.	se Contents						
Unit I Crystal Structures and	Deformation	of Materials	(08 Hours)				
Crystal Structures: Study of Crystal structures BCC, E Crystal imperfections, and Diffusion Mechanisms Material Properties: Mechanical (Impact, hardness, e Deformation of Materials: Elastic deformation, Plase effect, recovery, re-crystallization and grain growth Fracture: Types of fractures (brittle, ductile), Creep &	CC, HCP and l tc.), Electrical, tic deformation Fatigue failure	attice parameters & prop optical and Magnetic P : slip, twinning, work h	perties, Miller indices, roperties nardening, baushinger				
 Real World Assignment (Assignment 1 compute 1. Steps for Specimen Preparation for microscope 2. Observation and Drawing of Microstructure of 3. Observation and Drawing of Microstructure of Explore / Practical Applications: 1. Material Analysis: Investigate the crystal struand analyze how its structure influences its material and analyze how its structure influences its material and their role in material strength. You can ealloying. 	Sory, any one opic examination Steels, Cast Ire Non Ferrous M eture of a communication property ation process in xplore strength	of remaining two): on & Demonstration of on of various composition details of various composi- on material (e.g., metails rties, such as ductility of real crystal structures, f ening mechanisms like	f Optical Metallurgical ons ositions s like aluminum or steel) r hardness. focusing on dislocations grain size reduction or				

tı	rbine blades or semiconductor devices. Discuss how deformation affects their performa-	ance.				
4. E	xperimental Study: Conduct experiments to observe deformation in materials under	stress. For example,				
use a tensile test to measure yield strength and correlate it with the material's crystal structure.						
5. C	ase Studies: Research real-world failures in materials (e.g., bridge collapses or aircraft	component failures)				
a	ad analyze how crystal structure and deformation contributed to the failure.					
Unit I	Ferrous & Non-Ferrous Materials	(08 Hours)				
Ferrous	Carbon Steel: Classification, types & their composition, properties and Industrial appli	cation				
Alloy Ste Tool steel	els: Classification of alloy steels & Effect of alloying elements, examples of alloy steel) sensitization of stainless steel	ls, (Stainless steel,				
Cast Iro SG CI, M	: Classification, types & their composition, properties and Industrial application of (Walleable Cast and alloy Cast Iron) Microstructure and property relationship of various f	White CI, Gray CI, errous Materials				
Classifica Microstru	tion of Non-Ferrous Metals: Study of Non-ferrous alloys with Designation of Mechanical & other properties for Industrial Applications	on, Composition,				
Recent N	aterial used in Additive Manufacturing: Properties, Composition and Application of	nly				
Real Wo	rld Assignment:					
1. T	ne Industrial Visit must be preferably to					
(i	Material & Metallurgy related like Engineering Cluster, NDT Lab, and Nearby N	NABL lab or				
(i	i) Any manufacturing unit with material orientation					
S	udent must submit a properly documented Industrial Visit Report.					
Explore	Practical Applications:					
1. E	xploration of engineering Alloy (Name, composition, properties, microstructur	re, Heat treatment,				
D	esignation & specific applications) - One student one Alloy or material					
2. E	kamine aspects of component form material and manufacturing process point of vie	w (Name, Material,				
Ľ	rawing, Manufacturing Process, properties, microstructure, Heat treatment, & specific	c applications) - For				
e	ample spur gear, Needle etc. One student one component					
Unit II	Simple Stress & Strain	(08 Hours)				
Introduct Hooke's	on to types of loads (Static, Dynamic & Impact Loading) and various types of stresses aw, Poisson's ratio, Modulus of Elasticity, Modulus of Rigidity, Bulk Modulus.	with applications,				
Interrelati	on between elastic constants. Stress-strain diagram for ductile and brittle materials	. factor of safety.				
Stresses a	nd strains in determinate and indeterminate beam, homogeneous and composite bars u	inder concentrated				
loads and	self-weight					
Real Wo	rld Assignment:					
1. N	echanical properties of materials, Stresses and Design of components with case study.					
2. T	ension test for Ductile material using extensometer on Universal Testing Machine					
3. C	ompression test for Brittle material on Universal Testing Machine.					
4. S	near test of ductile material on Universal Testing Machine.					
5. T	ension test of Plastic/Composite material on low load capacity Tensile Testing Machine	е.				
Explore	/ Practical Applications:					
1. F	ailure Mode Analysis and Stresses with case study.					
2. S	ructural Integrity : Stress analysis ensures that components can withstand applied for					
_		rces without failure.				
F	or example, bridges and buildings are designed to handle stress from loads like	vehicles, wind, and				

3. Material Selection: Engineers use stress-strain curves to choose materials with appropriate properties, such

as elasticity, ductility, or toughness, for specific applications 4. Fatigue Analysis: Components subjected to cyclic loading, like aircraft wings or car axles, are analyzed for fatigue to prevent failure over time. 5. **Optimization**: Stress and strain data help optimize designs for weight reduction while maintaining strength, as seen in aerospace and automotive industries. 6. Failure Prevention: By understanding how materials deform under stress, engineers can predict and prevent failures, ensuring safety and reliability **Unit IV Shear Force & Bending Moment Diagrams** (08 Hours) SFD & BMD: Introduction to SFD, BMD with application, SFD & BMD for statically determinate beam due to concentrated load, uniformly distributed load, uniformly varying load, couple and combined loading, Concept of zero shear force, Maximum bending moment, point of contra-flexure Bending Stress on a Beam: Introduction to bending stress on a beam with application, Theory of Simple bending, assumptions in pure bending, derivation of flexural formula, Moment of inertia of common cross section (Solid Circular, Rectangular, I-section), Bending stress distribution along the same cross-section **Real World Assignment:** 1. Experimental verification of flexural formula in bending for cantilever, Simple supported beam. 2. Study and interpretations of stress distribution pattern using Polariscope for Plastic/Acrylic. **Explore / Practical Applications:** 1. Structural Engineering: SFD and BMD are used to analyze beams and frames in buildings, bridges, and other structures to ensure they can withstand applied loads without failure 2. Machine Design: In mechanical engineering, these diagrams help in designing machine components like shafts, levers, and gears to handle forces and moments effectively. 3. Aerospace Engineering: Aircraft wings and fuselage sections are analyzed using SFD and BMD to ensure they can endure aerodynamic forces during flight. 4. Automotive Engineering: Vehicle chassis and suspension systems are designed using these diagrams to optimize strength and weight. 5. Pipeline Design: SFD and BMD are used to evaluate stresses in pipelines due to internal pressure and external loads. Unit V **Shear Stress & Torsion** (**10 Hours**) Shear Stress on a Beam: Introduction to transverse shear stress on a beam with application, shear stress distribution diagram (Solid Circular, Rectangular, I cross-section) Torsion of circular shafts: Introduction to torsion on a shaft with application, Basic torsion formulae and assumption in torsion theory, Torsion in stepped shafts **Real World Assignment:** 1. Experimental verification of flexural formula in bending for cantilever, Simple supported beam. 2. Study and interpretations of stress distribution pattern using Polariscope for Plastic/Acrylic. **Explore / Practical Applications:** 1. Automotive Engineering: Drive shafts in vehicles are designed to handle torsional stress as they transfer torque from the engine to the wheels. Shear stress analysis ensures the durability of components like axles and suspension systems 2. Mechanical Springs: Torsion springs, which store rotational energy, are used in devices ranging from vehicle suspensions to garage doors. 3. Rotary Tools: Tools like drills and wrenches experience torsional loads during operation, requiring careful design to prevent failure.

- 4. **Structural Engineering**: Shear stress calculations are critical in designing beams and columns to withstand forces without buckling or breaking.
- 5. **Pipeline Design**: Shear stress analysis helps ensure pipelines can handle internal pressure and external loads safely.
- 6. Aerospace Engineering: Aircraft components, such as wings and fuselage sections, are analyzed for torsional and shear stresses to ensure they can endure aerodynamic forces during flight.

Learning Resources

Text Books:

- 1. Dr. V. D. Kodgire & S. V. Kodgire, "Material Science & Metallurgy For Engineers", Everest Publication.
- 2. R. K. Bansal, "Strength of Materials", Laxmi Publication
- 3. S. Ramamurtham, "Strength of material", Dhanpat Rai Publication
- 4. S.S. Rattan, "Strength of Material", Tata McGraw Hill Publication Co. Ltd.
- 5. B.K. Sarkar, "Strength of Material", McGraw Hill New Delhi
- 6. Singer and Pytel, "Strength of materials", Harper and row Publication
- 7. R. C. Hibbeler, "Mechanics of Materials", Prentice Hall Publication

Reference Books:

- 1. Cleghorn, W. L., (2005), "Mechanisms of Machines", Oxford University Press
- 2. James M. Gere, "Mechanics of Materials", CL Engineering
- 3. Timoshenko and Young, "Strength of Materials", CBS Publication, Singapore
- Prof. S.K. Bhattacharyya, IIT Kharagpur , "NPTEL Web course material" https://drive.google.com/file/d/1N2Eyv9ofPimIT2OSMZeMrSxe68Ulclei/view?usp=sharing
 MOOC / NPTEL/YouTube Links: -
 - 1. Prof. S.K. Bhattacharyya, IIT Kharagpur, "NPTEL Web course material" https://drive.google.com/file/d/1N2Eyv9ofPimIT2OSMZeMrSxe68Ulclei/view?usp=sharing

Savitribai Phule Pune University				
PCC202AUR+1	ndustrial Flectro	nics & Controls	rattern)	
Teaching Scheme	Credit	Examinat	tion Scheme	
Theory: 03 Hours/Week		CCE:	30 Marks	
Practical: NA	3	End-Semester:	70 Marks	
 Prerequisite Courses, if any: Engineering Physics Basic Electrical Engineering Basic Electronics Engineering Engineering Mathematics – I, II 	:			
Course Objectives:				
1. To identify and use fundamental devices.	concepts of industrial	electronics and pow	er semiconductor	
2. To understand power electronics systems.	conversion techniques	s and apply in indust	rial power supply	
 To compare between different co systems. 	ntrol strategies used ir	n industrial automatio	on and motor control	
4. To understand working of industrial sensors and instrumentation techniques in real-world applications.				
5. To learn industrial automation systems and communication protocols.				
6. To understand need of Industry 4	.0, IoT, and smart man	nufacturing concepts		
Course Outcomes:	1			
CO1. INTERPRET fundamental concepts their role in industrial applications.	of industrial electroni	o: ics and power semico	onductor devices and	
CO2. ANALYZE power electronics conversion techniques and industrial power supply systems for efficiency and performance improvement.				
CO3. COMPARE different control strategies used in industrial automation and motor control systems to determine their effectiveness.				
CO4. APPLY industrial sensors and instrumentation techniques in real-world applications to enhance automation and process control.				
CO5. KNOWLEDGE of industrial automation systems and communication protocols for seamless system integration.				
CO6. UNDERSTAND and APPLY Indu industrial environments for enhance	ustry 4.0, IoT, and sr d productivity and inn	nart manufacturing novation	concepts in modern	

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

	Course Contents			
Unit I	Introduction to Industrial Electronics	(08 Hours)		
Overview o BJTs, MOS Relays	f industrial electronics applications, Power semiconductor devices: (Dio FETs, IGBTs), Characteristics and switching properties: Limit Switches,	des, SCRs, Triacs, Electromechanical		
Industrial po	wer supply systems: Basics of rectifiers, inverters, choppers, and industrial	power supplies		
Power quali	ry issues (Harmonics, Power Factor, Voltage Sags & Surges)			
Power facto Protectors),	r correction methods & Industrial power protection devices (Circuit Brea EMI/EMC considerations in industrial electronics	ıkers, Fuses, Surge		
Real World	Assignment			
1. Char and	acteristics of Power Semiconductor Devices – Study and testing of SCR, T MOSFET.	RIAC, DIAC, IGBT,		
2. Concont	ept of working principle and response of Limit Switches and Electromecharol circuits.	anical Relays in		
3. Anal prote	yze power quality issues such as harmonics, voltage sags, and surges, and tection devices like circuit breakers, fuses, and surge protectors.	o study industrial		
4. Stud indu	y the power factor in an industrial circuit and apply correction methods using tors.	ng capacitors and		
Exemplars	/ Practical Applications: By using different electrical/electronic/mechanic	cal apparatus construct		
the industria	al test circuits and measure, analyze I-V characteristics and different or	ther parameters using		
Unit II	Power Electronics & Conversion Techniques	(06 Hours)		
Destifiers: S	ingle phase & three phase restifiers. Inverters, Single phase & three phase	(00 110urs)		
DC-DC con	verters (Choppers Buck Boost Buck-Boost Cuk Converters)	mventers,		
AC to DC C	onverters (Controlled & Uncontrolled Rectifiers)			
DC to AC C	onverters (Inverters: Single-phase & Three-phase).			
AC to AC C	onverters (Cvclo-converters, Voltage Regulators)			
Real World	Assignment			
1. AC	Voltage Controller Using TRIAC & DIAC – Speed control of single-phase	induction motor.		
2. Design a simple relay control circuit and test switching operation DC-DC Converter (Chopper) Circuits				
– Im	plementation of step-up & step-down choppers for motor control.	(
3. Effic Syst	3. Efficiency Testing of DC-DC Converters (Buck, Boost, and Buck-Boost) in Renewable Energy Systems			
4. App	ication of Cyclo converters in Large-Scale AC Motor Speed Control			
5. Indu	strial Voltage Regulation Using AC Voltage Controllers			
Exemplars	Exemplars / Practical Applications: Design the test circuits using PSpice /Proteus/TinkerCad/MATLAB			
and study th	e characteristics.			

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

Unit III Industrial Control Systems & Automation	(08 Hours)
Basic control system concepts (Open-loop, Closed-loop, Feedback Control), Proportiona Derivative (D) control & PID controllers: Tuning and implementation	al (P), Integral (I),
Basic of Programmable Logic Controllers (PLC): Architecture, Ladder Diagrams, and Pu	rogramming
SCADA Systems: Fundamentals & Applications (Industrial electronics enables remote control via Supervisory Control and Data Acquisition (SCADA) and Distributed Control Motor Control Devices: Variable Frequency Drives (VFDs), Soft Starters, Motor Starters	te monitoring and ol Systems (DCS). (DOL, Star-Delta)
Real World Assignment –	
1. PLC Programming for Industrial Automation – Basic logic operations and motor	control using PLC
2. PID Controller Implementation – Tuning and response study of first-order & second	ond-order systems
3. Implement a PID Controller to regulate temperature using a heater and a tempera	ture sensor
 Speed Control of DC Motor Using PWM & Choppers – Closed-loop control operation 	with variable speed
5. Interface a SCADA system with a PLC for remote monitoring of industry. Temperature & Pressure)	ial parameters (e.g.
6. Industrial Visit	
Exemplars / Practical Applications: Write code or generate simulation model in PLC Simulator to analyze the characteristics of the control system Simulink models.	/ MATLAB
Unit IV Industrial Sensors & Instrumentation	(08 Hours)
Overview of industrial sensors (Temperature, Pressure, Flow, Level, Proximity, Optical)	I
Motion and Position Sensors: Understand principles of motion and position sensing, Encoders, gyroscopes applications of motion and position sensors in robotics	accelerometers, and
Signal conditioning & Data acquisition, Transducers and their industrial applications networks in industrial applications	s, Wireless sensor
Bridge Circuit: Wheatstone Bridge, AC & DC Bridge.	
Real World Assignment –	
 Understand temperature, pressure, flow, and proximity sensors and their signal cond Measure and Calibrate different sensors using data acquisition systems. 	itioning: Procedure,
2. To study signal conditioning techniques and implement data acquisition for industria	l sensor signals.
3. Different types of transducers and their applications in industrial measurement system	ns.
4. Understanding of wireless sensor networks in Industry 4.0 applications and Hands-on IoT-based industrial monitoring.	1 implementation of
5. Design and analyze Wheatstone Bridge, AC Bridge, and DC Bridge circuits for preci-	ise measurement.
Exemplars / Practical Applications: Design a signal conditioning circuit and bridg	ge circuit for a given
sensor & Convert the analog sensor signal into a digital form using ADC further interfa-	ace the sensor with a
DAQ system and visualize the data on a PC	
Unit V Industrial Automation & Communication	(08 Hours)
Introduction to Industrial Automation, CNC Machines and Robotics	
Industrial Communication Protocols: (Modbus, Profibus, CAN, Ethernet, RS232, RS485))
Industry 4.0 and Smart Manufacturing, IoT Devices & Gateways: Enable remote monitor	ing and predictive

maintenance.

Overview of industrial electronics applications, Power semiconductor devices: (Diodes, SCRs, Triacs, BJTs, MOSFETs, IGBTs), Characteristics and switching properties: Limit Switches, Electromechanical Relays

Industrial power supply systems: Basics of rectifiers, inverters, choppers, and industrial power supplies

Power quality issues (Harmonics, Power Factor, Voltage Sags & Surges)

Power factor correction methods & Industrial power protection devices (Circuit Breakers, Fuses, Surge Protectors), EMI/EMC considerations in industrial electronics

Real World Assignment -

- 1. Understand the operation of a CNC machine and create a basic machining program using G-Code.
- 2. To establish communication between industrial devices using RS232 and Modbus protocols.
- 3. Hands-on experience with industrial communication protocols and understanding of data transmission and error handling in RS232 and Modbus.
- 4. Implement an IoT-enabled remote monitoring system for an industrial process.
- 5. To program and operate a robotic arm for an industrial pick-and-place task..

Exemplars / Practical Applications: Design the simulation model by using the software tools MATLAB Robotics Toolbox/ Arduino IDE/ MQTT Explorer/ QModMaster/ Fusion 360.

Learning Resources

Text Books:

- 1. Muhammad H. Rashid Power Electronics: Circuits, Devices, and Applications (Pearson)
- 2. Bimbhra P.S. Power Electronics (Khanna Publishers)
- 3. Hughes Electrical and Electronic Technology (Pearson)
- 4. Dorf R.C. & Bishop R.H. Modern Control Systems (Pearson)
- 5. Jon Stenerson Industrial Automation and Process Control (Pearson)

Reference Books:

- 1. Mohan, Undeland, Robbins Power Electronics: Converters, Applications, and Design (Wiley)
- 2. Bolton W. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering (Pearson)
- 3. Frank D. Petruzella Programmable Logic Controllers (McGraw-Hill)
- 4. R.K. Rajput Industrial Electronics and Control (S. Chand)
- 5. James A. Rehg & Glenn J. Sartori Industrial Electronics (Pearson)

MOOC / NPTEL/YouTube Links: -

- 1. https://nptel.ac.in/courses/108105088
- 2. https://www.youtube.com/playlist?list=PLE8F9BF5CB1201D23
- 3. <u>https://www.youtube.com/watch?v=3k9_YzcfGJo&list=PLgwJf8NK-</u>

	Savitrib	ai Phule Pune Un	iversity	
Se	cond Year of Automati	ion & Robotics Er	igineering (2024]	Pattern)
	PCC203AUI	R: Manufacturing	Technology	
Te	eaching Scheme	Credit	Examinati	on Scheme
Theory:	03 Hours/Week	2	CCE:	30 Marks
Practical:	NA	3	End-Semester:	70 Marks
Prerequisite	Courses, if any:			
• Manuf	acturing Practice Workshop			
Progra Course Obje	mming & Problem Solving			
1 Desci	ribe various cand and permaner	t mold casting methods	procedure and mold d	asign aspects
1. Desci 2 Class	ify describe and compare the r	rinciples of various joir	, procedure and more us	esign aspects.
3. Study	v various metal cutting operation	ns viz. turning, milling.	grinding, etc.	
4. Unde	erstand sheet metal forming ope	rations and die design p	rocedure.	
5. Unde	erstand plastic processing techni	iques and 3D printing re	equirements.	
Course Outc	omes:		•	
After success	ful completion of the course,	learner will be able to	D:	
CO1. SELEC solidifi	T appropriate molding, core cation rate and DESIGN riser s	making and melting ize and location for san	practice and ESTIM d casting process	ATE pouring time,
CO2. CLASSIFY suitable joining processes based on application and EVALUATE welding characteristics				
CO3. SELECT suitable metal cutting operation based on requirements viz. surface finish, MRR, etc.				
CO4. DEMO	NSTRATE press working operations	ations and APPLY the b	asic principles to DESI	GN dies and tools for
CO5 DIFFE	g and shearing operations RENTIATE thermonlastics and	d thermosetting and an	nlications in modern r	nanufacturing in 3D
printing	g	a thermosetting and up	prications in modern i	handracturing in 5D
		Course Contents		
Unit I	Casting	and Foundry Proces	ses	(08 Hours)
Introduction to sand, Properties	casting processes, Patterns: Pa s of molding sands, Core makin	ttern materials, types of g, melting practices and	pattern, allowances pa furnaces, Pouring and	ttern design, molding Gating system design
Numerical estir of casting, Dire	nation to find mold filling time actional and Progressive solidifi	, Riser design and place cation, Estimation of so	ment, Principles of cool lidification rate	ing and solidification
Cleaning and H Investment cast	Finishing of casting, Defects a ting, Centrifugal casting, Conti	nd remedies, Principle nuous casting	and equipment of Perr	nanent mold casting,
Real World A	Assignment:			
1. Case St	tudy on Industrial Casting Appl	ications.		
2. Unders	tand the importance of pattern	materials and types in th	e casting process.	
3. Analyze the impact of gating system and riser design on casting quality.				
4. Investig	gate real-world casting defects	and propose solutions.		
Exemplars / I	Practical Applications:			
1 Decim	a basic seting system and ris	er for the selected con	poponent Poport (1.5 n	ages) including design

1. Design a basic gating system and riser for the selected component. Report (4-5 pages) including design calculations, gating system layout.

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

Unit II	Joining and Welding Processes	(08 Hours)
Classification	of joining processes: Welding, brazing, soldering, Advantages and limitations o	f different joining
process		
Welding termi	nology and types of joints, Gas Welding and Cutting	
Arc Welding	Processes: Working principle, Equipment of Single carbon arc welding, FCAW,	TIG, MIG, SAW,
applications		
Resistance We	Iding: Spot, Seam and Projection weld process, Heat balance in resistance welding	
Defects in var	nurgy and Heat Affected Zone, weld inspection	
Real World	Assignment:	
1. Comp	arative Analysis of Welding, Brazing, and Soldering in Industrial Applications	
2. Evalu	ate and select an appropriate welding process for a real-world structural application	1.
3. Invest	igate common welding defects and propose quality control measures.	
4. Perfor	m a welding operation and analyze the strength of the welded joint.	
Evennlars /	Practical Annlications:	
1. Case s	tudy report (4-5 pages) with images, defect analysis, and quality control recommendation	ndations.
Unit III	Theory of Metal Cutting	(08 Hours)
Basics of subt	active manufacturing, operations on Lathe, Milling & Grinding machines	
Design of mot	d sutting machanics. Chin formation and types of shine. Orthogonal and shlique a	utting Shoon angle
Dasies of meta	returning mechanics, Cirip formation and types of cirips, Orthogonal and conque ci	la Ta al ais nature
T = 1	tuellife. Teches's techlife exception	iis, 1001 signature,
1 ool wear and		
Real World	Assignment –	
	hate the components of cutting force using the provided experimental data.	1 110
2. Deter	mine tool life using the equation $VI^n = C$ and estimate machining costs base	ed on tool life.
3. Cond	act a real-time case study on tool life for an industrial component.	
Exemplars /	Practical Applications: Perform and submit (4-5) pages report on turning or m	illing operation (in a
lab or worksh	pp) on different materials (e.g., aluminum, mild steel, stainless steel).	
Tab of workshi		
Unit IV	Metal Forming and Sheet Metal Working	(08 Hours)
Unit IV Metal Form	Metal Forming and Sheet Metal Working ng: Classification of forming processes, Stress-strain relations in plastic deformation	(08 Hours) ation, Hot working
Unit IV Metal Form vs. cold worki	Metal Forming and Sheet Metal Working ing: Classification of forming processes, Stress-strain relations in plastic deformang, Rolling: Types, defects, and applications	(08 Hours) ation, Hot working
Unit IV Metal Form vs. cold worki	Metal Forming and Sheet Metal Working ing: Classification of forming processes, Stress-strain relations in plastic deformang, Rolling: Types, defects, and applications	(08 Hours)
Unit IV Metal Form vs. cold worki Forging: Ope	Metal Forming and Sheet Metal Working ing: Classification of forming processes, Stress-strain relations in plastic deformang, Rolling: Types, defects, and applications n-die, Closed-die, and Impression-die forging, Extrusion: Direct, Indirect, Wire and	(08 Hours) ation, Hot working d Tube drawing
Unit IV Metal Form vs. cold worki Forging: Ope Sheet Metal V	Metal Forming and Sheet Metal Working ing: Classification of forming processes, Stress-strain relations in plastic deforman ng, Rolling: Types, defects, and applications n-die, Closed-die, and Impression-die forging, Extrusion: Direct, Indirect, Wire an Vorking: Types of sheet metal operations, Press working equipment and terminology	(08 Hours) ation, Hot working d Tube drawing ogy, Types of dies,
Unit IV Metal Form vs. cold worki Forging: Ope Sheet Metal V Clearance ana	Metal Forming and Sheet Metal Working ing: Classification of forming processes, Stress-strain relations in plastic deformang, Rolling: Types, defects, and applications n-die, Closed-die, and Impression-die forging, Extrusion: Direct, Indirect, Wire an Vorking: Types of sheet metal operations, Press working equipment and terminolocysis, Estimation of cutting forces, Centre of pressure and blank size determination	(08 Hours) ation, Hot working d Tube drawing ogy, Types of dies, on, Design of strip

Real V	Vorld	Assignment –	
1.	Identi	y at least one industrial applications for each process (e.g., hot rolling for railway	tracks, cold rolling
	for au	omotive sheets).	
2.	Comp	are forging with other manufacturing processes (e.g., casting, machining) in terms	of strength and
	durabi	lity.	
3.	Apply	sheet metal operations such as shearing, bending, and deep drawing to create a rea	al-world product.
4.	Resea	ch the principles, advantages, and limitations of hot working and cold working	
Exem	plars /	Practical Applications: Suggest an appropriate forming process for a given p	product (e.g., turbine
blades,	alumin	um cans) and justify the choice.	
Uni	t V	Polymer Processing	(08 Hours)
Therm	oplastic	s and Thermosetting. Processing of polymers. Thermoforming	
-			
Extrus	ion M	olding: Compression molding, transfer molding, Blow molding, Rotation m	oulding, Injection
mouldi	ng - Pro	ocess and equipment	
Extrus	ion of]	Plastic: Type of extruder, extrusion of film, pipe, Cable, Introduction to Additive N	Manufacturing, 3D
Printin	g techni	ques (FDM, SLA, SLS, DMLS)	
Real V	Vorld	Assignment –	
1.	Design	a functional part (e.g., gear, bracket, or prototype model) using CAD software.	
2.	Print t	he part using different 3D printing techniques.	
Exem	plars /	Practical Applications: Comparison Report (2-3 Pages): 3D Printing vs. Conve	entional Machining
Learr	ing Ro	esources	
Text I	Books:		
1	. Ami	tabha Ghosh & Ashok Kumar Mallik, 'Manufacturing Science', East-West Press.	
2	. R.K	Rajput, 'A Textbook of Production Engineering', Laxmi Publications.	
3	. Sero Edu	pe Kalpakjian & Steven R. Schmid, 'Manufacturing Engineering and Tech	nology', Pearson
4	. S.K. Med	Hajra Choudhury, A.K. Hajra Choudhury & Nirjhar Roy, 'Workshop Technolo ia Promoters & Publishers Pvt. Ltd.	ogy (Vol. 1 & 2)',
Refere	ence Bo	poks:	
1	. J.S.	Campbell, 'Principles of Manufacturing Materials and Processes', Tata McGraw-I	Hill.
2	. Mik	ell P. Groover, 'Introduction to Manufacturing Processes', Wiley India	
3	. Ian Prot	Gibson, David Rosen, Brent Stucker, 'Additive Manufacturing Technologies: 3 otyping and Direct Digital Manufacturing' Springer	D Printing, Rapid
MOOC	/ NPTE	L/YouTube Links: -	
1.	https:/	/www.youtube.com/watch?v=z-mM8LwQcno/	
2. 3	https:/	<u>www.youtube.com/watch?v=DA3r9/Icgd0</u> /www.youtube.com/watch?v=_AhfOzODvnE	
4.	https:/	/www.youtube.com/watch?v=9JTRqfNAqhM&list=PLwdnzlV3og	
5	oWI80	<u>)Eu4hsT-n_r8UbWbquy&index=2</u> /www.youtube.com/watch ² y=liyeGnOw2G0&list=PI.9ssGyHa3fnwPH1@SkV&niX12Srky	:8rga
5.	<u>mups./</u>	****.jouraoe.com/ water. *=j*conQw200@nst=rE7550yfta5mwrffrg5K*0pJA125lKA	<u></u>

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)			
PCC204AUR: Material	Testing and Char	acterization	Laboratory
Teaching Scheme	Credit	Exe	mination Scheme
Practical: 02 Hours/Week	1	Oral:	50 Marks
 Prerequisite Courses, if any: Engineering Mechanics, Manufact 	turing processes works	shop, Engineer	ing Chemistry
 Course Objectives: To ACQUIRE basic knowledge of materials To DRAW Shear Force and Bendin Bending, Shear stress, Slope and E To IMPART fundamental knowledsignificance of structure property r To INDICATE the importance of h To EXPLAIN the material selection To UTILIZE the concepts of Solic combined mode of loading and fail Course Outcomes: After successful completion of the course CO1: DETERMINE various types of members. CO2: CALCULATE Shear force and Support and COMPUTE the slope & d CO3: EXAMINE micro structures and properties of materials. CO4: DIFFERENTIATE and TEST meta CO5: CATAGORIZE and RECOMMINE CO6: UTILIZE the concepts of SED & 	stress, strain due to va ng Moment Diagram f Deflection on Beam. edge of material scient elationship. teat treatment on struct on process lid Mechanics and En lures , learner will be able to stresses and strain de l bending moment for eflection, bending stree different phases also I echanical properties us NOD appropriate mate	trious types of for transverse l nce and engir ture and mecha ngineering Ma o: eveloped on de r various type esses and shear LINK phase di ing destructive rials for various	loading for different types of loading and to DETERMINE heering and to ESTABLISH anical properties of materials. Atterials on application based eterminate and indeterminate eterminate and indeterminate es of transverse loading and estresses on a beam. Stribution with mechanical e and nondestructive methods as applications. pent and microstructure to
SOLVE combined loading application	based problems virtua	ally IoT based	tools
	List of Practical's		
 Experiment 01 Validation of experimental result (Comparison of other materials si conclude on failure behavior using 2. Comparison of other materials stree Exemplars / Practical Applications Aerospace Industry: Validation of aircr Automotive Engineering: Crashworthines 	s of Tension and Co tress strain plots with experiment results grass ss strain plots with tes raft structural comports and durability of veh	ompression tern n tested sampl aph) ted samples nents (e.g., with nicle frames ar	sts using ductile and brittle les. materials (Compare and ing spars, fuselage frames). ad body panels
Experiment 02			
 Experimental verification of flexurusing strain gauges. Case study on cantilever and simple Exemplars / Practical Applications Quality Control in Beam Manufacturing (e.g., I-beams, T-beams) to verify me Mechanical Engineering Structures: Used 	ral formula in bending y supported structures (Steel, Aluminum, C chanical properties b in verifying the stress	g for cantilever s and their failu oncrete): Test pefore deployu s/strain profile	and simply supported beam ure. ing - standard beam sections nent. Design Validation in in machine components like Page 40 of 82

support arms, robotic limbs, or levers.

Experiment 03

- **1.** Conduction of torsional/ shear test on ductile material
- 2. Case study on part failure under torsion/shear

Exemplars / Practical Applications

Design and Validation of Shafts in Mechanical Systems: Drive shafts, crankshafts, camshafts, and axles in vehicles and machines Fastener and Threaded Component Testing: Bolts, screws, and threaded rods Automotive Powertrain and Steering Component Analysis: Torsion bars, drive shafts, steering knuckles

Experiment 04

- 1. Impact Test for Steel, Aluminum, Brass and Copper(Charpy/Izod)
- 2. Failure case studies under impact loading of any one material on which trials conducted

Exemplars / Practical Applications

Quality Control in Structural Steel Fabrication: Steel used in Bridges, high-rise buildings, offshore platforms Crashworthiness in Automotive Components: Aluminum, Steel, Brass used in Bumpers, crash zones, engine mounts, control arms

Experiment 05

- 1. Test of Creep, Fatigue and Fluorescence Microscope using simulator
- 2. Case studies of any one tested

Exemplars / Practical Applications

Creep Testing (Using Simulators): Turbine Blades in Jet Engines and Power Plants, Boiler Tubes and Steam Pipes Fatigue Testing (Using Simulators): Aircraft Wings and Fuselage Panels, Automotive Suspension and Chassis, Railway Tracks and Wheels Fluorescence Microscopy (Using Simulators): Material Science (Fluorescent Dye Penetrant)

Experiment 06

- 1. Material Hardness measurement using Brinell's / Vicker's / Rockwell / Poldi's Hardness testing set up. Test samples should be before and after case harden and core harden heat treatment
- 2. Visit to heat treatment plant/lab for hardening process.

Exemplars / Practical Applications

Quality Control in Gear Manufacturing: Test Sample: Steel gears before and after case hardening Inspection of Automotive Components (Camshafts, Crankshafts): Forged shafts after core hardening and induction hardening Heat Treatment Verification in Structural Steel Plates and Beams: Steel plate samples before and after quench and temper

Experiment 07

- **1.** Analysis of given sample using any one of the Non-destructive tests: Dye Penetrant Test/ Magnetic Particle test/ Ultrasonic Test.
- 2. Samples can be collected from various failures occurring with automobiles, machine parts, household appliances, etc and analysis of parts failed.

Exemplars / Practical Applications

Dye Penetrant Test (DPT) – For Surface Crack Detection: Inspection of Welded Joints in Pressure Vessels Magnetic Particle Test (MPT) – For Surface & Near-Surface Flaw: Rail Axle and Wheel Shaft Inspection made up of Ferromagnetic materials like carbon steel ,Ultrasonic Test (UT) – For Internal Defect Detection: Inspection of Structural Steel in Bridges

Experiment 08

- 1. Interpretation and Drawing of Microstructures of Ferrous (Steel, cast iron) and Non-ferrous materials (Aluminum, nickel) of various compositions. Identified microstructures can be used for interpretation of material compositions
- 2. Visit to test lab for Reading and interpretation of standard material test report (certificate) of ferrous and non-ferrous materials (These test reports can be availed from Workshop, Industry)

Exemplars / Practical Applications

FERROUS MATERIALS: Low Carbon Steel (<0.25% C) - Ferrite + small amount of pearlite, Medium Carbon Steel (0.25-0.6% C) - Increased pearlite + ferrite, High Carbon Steel (>0.6% C) - Predominantly pearlite with some cementite, Gray Cast Iron - Graphite flakes in a pearlitic or ferritic matrix, White Cast Iron - Cementite and pearlite, no graphite

Experiment 09

- 1. Case study on material selection considering functional and environmental requirements
- 2. Identify various ASTM standards used or required in this case study and make comprehensive report of it

Exemplars / Practical Applications

Bicycle Frame Design for Urban Commuters : Functional Requirements: Lightweight, Corrosion resistant, Affordable Environmental Requirements: Recyclable material, Low manufacturing emissions Material Chosen: Aluminum, bamboo, or recycled steel: Sustainable transport, green mobility programs

Automotive Body Panel Design: Functional Requirements: High strength-to-weight ratio, good formability and crash resistance, Corrosion resistance Environmental Requirements: Low CO₂ footprint during production, Recyclability at end-of-life Material Chosen: Aluminum alloy or advanced high-strength steel (AHSS) : Used by companies like Ford and BMW in lightweight vehicle design

Wind Turbine Blade Material: Functional Requirements: High fatigue strength, Lightweight, Weather and UV resistance Environmental Requirements: Low embodied energy, Possibility for recyclable or bio-based composites Material Chosen: Glass fiber-reinforced polymer (GFRP) with epoxy or bio-resins: Used in offshore and onshore wind farms

Experiment 10

1. Conduction of any one test on VLab from the list: Tensile Test on Mild steel, Tensile Test on Cast Iron, Compression Test on Mild Steel, Compression Test on Cast Iron, Direct shear test on Mild steel Rod, Direct Shear test on Timber Specimen, Direct shear test on Mild steel Plate, Bending Test on Mild steel, Torsion Test on Mild Steel, flexural formula in bending for simply supported and cantilever beam, stress strain measurement through strain gauge, torsion formula for bar, flexural formula validation through other software.

2. Each student should have different load condition and case study of failure of such loading condition. *** All destructive and non-destructive tests shall be performed as per applicable ASTM / BIS standards

Learning Resources

Text Books:

- 1. S. Ramamurtham, "Strength of material", Dhanpat Rai Publication
- 2. S.S. Rattan, "Strength of Material", Tata McGraw Hill Publication Co. Ltd.
- 3. R. K. Bansal, "Strength of Materials", Laxmi Publication
- 4. Dr. V. D. Kodgire & S. V. Kodgire, "Material Science & Metallurgy For Engineers", Everest Publication.
- 5. William D. Callister, "Materials Science and Engineering an Introduction", Jr, John Wiley & Sons, Inc

Reference Books:

- 1. G. H. Ryder, "Strength of Materials", Macmillan Publication
- 2. James M. Gere, "Mechanics of Materials", CL Engineering
- 3. George Ellwood Dieter, "Mechanical Metallurgy", McGraw-Hill 1988
- 4. A. K. Bhargava, C.P. Sharma, "Mechanical Behaviour & Testing of Materials", P H I Learning Private Ltd
- 5. Raghvan V., "Material Science & Engineering", Prentice Hall of India, New Delhi. 2003

MOOC / NPTEL/ YouTube Links: -

Prof. S.K. Bhattacharyya, IIT Kharagpur, "NPTEL Web course material" https://drive.google.com/file/d/1N2Eyv9ofPimIT2OSMZeMrSxe68Ulclei/view?usp=sharing

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)				
	MDM221AUR	: Engineering Ma	thematics - III	
Т	eaching Scheme	Credit	Examinatio	on Scheme
Theory:	03 Hours/Week		CCE:	30 Marks
Practical:	NA	3	End-Semester:	70 Marks
Prerequisite Diffe Colle	e Courses, if any: erential & Integral calculus, Di ection, classification and repre	fferential equations of sentation of data and	first order & first degr Vector algebra.	ree, Fourier series,
Course Obj 1. To f Statis them enhan	ectives: amiliarize the students with stical methods, Probability theo with the techniques to underst nee analytical thinking power,	concepts and techni ory, Numerical Methor tand advanced level m useful in their discipli	ques in Ordinary dif ds and Vector calculus. athematics and its app nes	ferential equations, The aim is to equip lications that would
Course Out After succes CO1: SOLV spring syster CO2: APPL data applicat CO3: SOLV techniques. CO4: OBTA ordinary diff CO5: PERF flow problem	Course Outcomes: After successful completion of the course, learner will be able to: CO1: SOLVE higher order linear differential equations and its applications to model and analyze mass spring systems. CO2: APPLY Statistical methods like correlation, regression in analyzing and interpreting experimental data applicable to reliability engineering and probability theory in testing and quality control. CO3: SOLVE Algebraic & Transcendental equations and System of linear equations using numerical techniques. CO4: OBTAIN Interpolating polynomials, numerical differentiation and integration, numerical solutions of ordinary differential equations used in modern scientific computing applicable to Mechanical engineering. CO5: PERFORM Vector differentiation & integration, ANALYZE the vector fields and APPLY to fluid			
Course Contents				
Unit I	Linear Differential Equatio	ns (LDE) and Applic	ations	(07 Hours)
LDE of nth order with constant coefficients, Complementary Function, Particular Integral, General method, Short methods, Method of variation of parameters, Cauchy's and Legendre's DE, Simultaneous DE. Modelling of Mass-spring systems, Free & Forced damped and undamped systems				
 Real World Assignment 1. Modelling of Mass-spring systems, Free & Forced damped and undamped systems. 2. Determination of natural frequency and resonant analysis of mechanical systems using LDE. 				
Exemplars / Electrical Ci	rcuit Analysis. Structural Engi	neering		
Unit II	Statistics & Probability	6		(08 Hours)
Introduction	n to Data Science, Measures	s of central tendency	, Measures of dispers	sion, Coefficient of
variation, Me Correlation of regression Probability, Poisson, Nor	oments, Skewness and Kurtosi : Karl Pearson's correlation, S estimates. Probability density function, an mal, and Test of hypothesis: C	s, Spearman's rank corre nd Central limit theore Chi-square test and t- to	lation, Regression anal em, Probability distributest	lysis and Reliability ttions: Binomial,
Real World Assignment 1. Analyze statistical features of experimental data/standard datasets in mechanical engineering				

applications				
2. Problem	2. Problem solving and decision making related to quality control, reliability engineering, and predictive			
maintenance	maintenance using probability theory.			
3. Implement	t problem solving using software such as C/C++/Python/MATLAB.			
Exemplars /	Practical Applications			
Quality Con	trol in Manufacturing, assess product reliability and failure rates for maintenance	e scheduling		
Unit III	Numerical methods for solving algebraic and transcendental equations	(08 Hours)		
Numerical S	Solution of Algebraic and Transcendental equations: Bisection, Sec	ant, Regula-Falsi,		
Newton-Rap	whom and Successive Approximation Methods, Convergence and Stability.			
Numerical S	olutions of System of linear equations: Gauss elimination with partial pive	oting, LU		
Decompositio	on, Jacobi and Gauss-Seidel Methods.			
Real World	Assignment			
1. Nume	rical solution of applied to Newton's laws of motion, Heat & Mass transfer	equations and		
therm	odynamic processes.			
2. Nume	rical solution of coupled mass spring systems			
3. Imple	ment problem solving using software such as C/C++/Python/MATLAB			
Exemplars /	Practical Applications			
Engineering	Design Optimization, Electrical Power System Analysis, Computational	Fluid Dynamics		
(CFD), Cont	rol System Engineering, Finance and Economics Modeling			
Unit IV	Numerical Interpolation and solution of ODE	(08 Hours)		
Interpolation	n: Finite Differences, Newton's and Lagrange's Interpolation for	nulae, Numerical		
Differentiatio	n.			
Numerical I	ntegration: Trapezoidal and Simpson's rules, Bound of truncation error.			
Solution of (Ordinary differential equations (ODE): Euler's, Modified Euler's, Rung	ge-Kutta 4th order		
methods and	Predictor-Corrector methods.			
Real World	Assignment			
1. Obtain	n interpolating polynomial passing through equally or unequally spaced data	a points applicable		
to flui	d flow problems and material properties.			
2. Use o	f numerical integration to calculate areas volumes forces fluid mechanics,	heat transfer and		
machi	ne design.			
3. Nume	rical solution of ODE to predict temperature profile and transient behavior i	in heat conduction		
analys				
4. Implement problem solving using soltware such as C/C++/Python/MATLAB.				
Exemplars / Practical Applications				
Data Intilig a	nu curve estimation, Engineering sinulations and modeling, Signal proc	essing and image		
Teconstruction	Numerical weather prediction, Control systems and fobolics modering			
Unit V	Vector Calculus	(08 Hours)		
Vector differ	entiation, Gradient, Divergence and Curl, Directional derivative, Solenoi	dal & Irrotational		
fields, Vector	identities. Line, Surface and Volume integrals, Green's Lemma, Gauss's D	ivergence theorem		
and Stoke's t	heorem.			
Real World	Assignment	1 (* 11		
1. Obtain	n fluid flow behavior such as velocity fields, rotational motion and scalar po	otential field.		
2. Comp	bute work done, circulation and determination of fluid flow rate.			
Exemptars / Fractical Applications				
transfor and	bermodynamics, Politics and control system design	am analysis, Heat		
i dansici alid l	nermouynamics, Robolics and control system design			

	Learning Resources			
Text 1	Books:			
1.	Higher Engineering Mathematics by B.V. Ramana (Tata McGraw-Hill).			
2.	Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi).			
Refer	ence Books:			
1.	Advanced Engineering Mathematics, 10e, by Erwin Kreyszig (Wiley India).			
2.	Advanced Engineering Mathematics, 7e, by Peter V. O'Neil (Cengage Learning).			
3.	Differential Equations, 3e by S. L. Ross (Wiley India).			
4.	Introduction to Probability and Statistics for Engineers and Scientists, 5e, by Sheldon M. Ross			
	(Elsevier Academic Press)			
5.	Steven C. Chapra, 'Applied Numerical Methods with MATLAB for Engineers and Scientist', (Tata			
	Mc- Graw Hill Publishing Co. Ltd).			
6.	Jason Brownlee, 'Statistical Methods for Machine Learning', Machine learning Mastery.			
MOO	OC / NPTEL/ YouTube Links: -			
1.	https://nptel.ac.in/courses/111107098/			
2.	http://nptel.ac.in/courses/111105041/			
3.	https://nptel.ac.in/courses/111107105/			
4.	https://nptel.ac.in/courses/111105122/			

Savitrib Second Year of Automat	ai Phule Pune Ur ion & Robotics E	niversity ngineering (2	2024 Pattern)
MDM222AUR: Indus	trial Electronics a	& Controls L	aboratory
Teaching Scheme	Credit	Exa	mination Scheme
Practical: 02 Hours/Week	1	Oral:	50 Marks
 Prerequisite Courses, if any: Basic Electronics & Electrical E Digital Electronics Control Systems Engineering Mathematics - L & 	ngineering		
Engineering Mathematics – 1 & Course Objectives:	11		
1. INTERPRET fundamental condevices.	ncepts of industrial el	ectronics and po	ower semiconductor
2. ANALYZE power electronics	conversion technique	es and industrial	power supply systems.
3. COMPARE different control s	strategies used in indu	ustrial automatio	on and motor control
systems.			
4. APPLY industrial sensors and	instrumentation tech	niques in real-w	orld applications.
5. LEARN industrial automation	systems and commun	nication protoco	ls.
6. UNDERSTAND & APPLY II	1005179 4.0, 101, and	smart manufact	uring concepts.
On successful completion of the course.	learner will be able to	.	
CO1: INTERPRET fundamental conc and their role in industrial applic	epts of industrial ele ations.	ectronics and po	wer semiconductor dev
CO2: ANALYZE power electronics of efficiency and performance impr	conversion technique ovement.	s and industrial	l power supply systems
CO3: COMPARE different control str to determine their effectiveness.	ategies used in indus	trial automation	and motor control system
CO4: APPLY industrial sensors and i automation and process control.	nstrumentation techn	iques in real-wo	orld applications to enha
CO5: KNOWLEDGE of industrial a system integration.	utomation systems a	nd communicat	tion protocols for seam
CO6: UNDERSTAND and APPLY I industrial environments for enha	ndustry 4.0, IoT, and nced productivity and	l smart manufa l innovation.	cturing concepts in moc
	Course Contents		
Perform any 7 experiments from the below	ow mentioned list wit	th mandatory in	dustrial visit:
Experiment 1			02 hrs.
Study of Power Semiconductor Devices analyze I-V characteristics using approp	and Their Applicatio riate test circuits.	ns in Industrial	Electronics & Measure a
Real World Assignment Application-Oriented Analysis of Power IGBT under different voltage and load c	Semiconductor Devi onditions.	ices like SCR, T	RIAC, MOSFET, and
Exemplars / Practical Applications Industrial Motor Control, Power Supplications	es and Inverters, Ele	ectric Vehicles (EVs), Light Dimming a

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

Design and Analysis of Industrial Power Supply Systems: Rectifiers, Inverters, and Choppers (Design can be implemented by using circuit design software, Simulink model or hardware Real World Assignment Simulate and analyze the behavior of rectifiers (AC to DC), inverters (DC to AC), and choppers (DC to variable DC) under various load conditions using tools like MATLAB/Simulink, Multisim, or hardware too. Exemplars / Practical Applications Industrial Automation & Machinery, Renewable Energy Systems, Electric Vehicles (EVs), Power Backup and UPS Systems, High-Voltage DC (HVDC) Transmission Experiment 3 02 hrs. Design and Control any of DC-DC/DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: Design and implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Pars. Real-World Assignment: Design and implementat a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., plezoelectric, strain gauge) sensors. Pars. Pressure (e.g., Plezoteletric, strain gauge) sensors. Partical Applications: Partical Applications: Programming for Industrial	Experiment 2	02 hrs.
can be implemented by using circuit design software, Simulink model or hardware Real World Assignment Simulate and analyze the behavior of rectifiers (AC to DC), inverters (DC to AC), and choppers (DC to variable DC) under various load conditions using tools like MATLAB/Simulink, Multisim, or hardware bear and the analyze the behavior of rectifiers (AC to DC), inverters (DC to AC), and choppers (DC to variable DC) under variable DC (HVDC) Transmission Exemplars / Practical Applications 02 hrs. Design and Control any of DC-DC/DC-AC/AC-DC/AC-AC Converters for Industrial Applications 02 hrs. Design and Simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cycle-converters, Matrix Converters) 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) 02 hrs. Real-World Assignment: Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and Implementation of Teming applications: Process Industries (OI, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Au	Design and Analysis of Industrial Power Supply Systems: Rectifiers, Inverters, and Choppe	ers (Design
Real World Assignment Simulate and analyze the behavior of rectifiers (AC to DC), inverters (DC to AC), and choppers (DC to variable DC) under various load conditions using tools like MATLAB/Simulink, Multisim, or hardware interperson in the interperson of the interperso	can be implemented by using circuit design software, Simulink model or hardware	in (Design
Simulate and analyze the behavior of rectifiers (AC to DC), inverters (DC to AC), and choppers (DC to variable DC) under various load conditions using tools like MATLAB/Simulink, Multisim, or hardware terminated DC) under various load conditions using tools like MATLAB/Simulink, Multisim, or hardware terminated Automation & Machinery, Renewable Energy Systems, Electric Vehicles (EVs), Power Backup and UPS Systems, High-Voltage DC (HVDC) Transmission Experiment 3 02 hrs. Design and Control any of DC-DC/DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: De-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters, (Actro DC converters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Vel hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezolectric, strain gauge) sensors. Vertex Experiment 5 02 hrs. Persein 4 02 hrs. Precess Industria (Guid, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industrial Sensors (With OAS Signment: Design ladder logic programs to implement basic log	Real World Assignment	
variable DC) under various load conditions using tools like MATLAB/Simulink, Multisim, or hardware Fixemplars / Practical Applications Industrial Automation & Machinery, Renewable Energy Systems, Electric Vehicles (EVs), Power Backup and UPS Systems, High-Voltage DC (HVDC) Transmission Experiment 3 Q2 hrs. Design and Control any of DC-DC/ DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Experiment 4 Q2 hrs. DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters, IAC-DC Converters (Controlled Rectifiers), AC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 Q2 hrs. Design and implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocou-le) and pressure (e.g., pizzoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 Q2 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Convey on Eld Automation – Tuning and response study of first-order & second-order systems. Being and implement PID control for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical A	Simulate and analyze the behavior of rectifiers (AC to DC), inverters (DC to AC), and chop	opers (DC to
Industrial Automation & Machinery, Renewable Energy Systems, Electric Vehicles (EVs), Power Backup and UPS Systems, High-Voltage DC (HVDC) Transmission Experiment 3 02 hrs. Design and Control any of DC-DC/ DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and Simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAH/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) 02 hrs. Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order	variable DC) under various load conditions using tools like MATLAB/Simulink, Multisim,	or hardware
Data primer of the production of a function of a functin function of a function of a function of a function of	Exemplars / Practical Applications	
Individual Tarking of the Hamiltory, Relationary Energy Systems, Devine Tentres (E+0), Forder Backup and UPS Systems, High-Voltage DC (HVDC) Transmission 02 hrs. Experiment 3 02 hrs. Design and Control any of DC-DC/DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Control Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) 02 hrs. Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 PLC Programming for Industrial Automation – Basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Controller Implementation – Tuning and response study of first-order & second-order systems. Real	Industrial Automation & Machinery Renewable Energy Systems Electric Vehicles (1	FVs) Power
Experiment 3 02 hrs. Design and Control any of DC-DC/DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) 02 hrs. Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Exper	Backup and UPS Systems, High-Voltage DC (HVDC) Transmission	
Design and Control any of DC-DC/ DC-AC/AC-DC/AC-AC Converters for Industrial Applications Real-World Assignment: Design and simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 02 trs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industrise (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 trs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design and Lapplications: Conveyors Bit Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 trs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and singlement Dic ontrol or micro and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature 1D controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators), Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 Develop a closed-loop system using a DC motor (or BLDC/servo motor)	Experiment 3	02 hrs.
Real-World Assignment: Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) 02 hrs. Real-World Assignment: Design and implement as system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 PLC Programming for Industrial Automation – Basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design andi implement PID controllers for first-order	Design and Control any of DC-DC/ DC-AC/AC-DC/AC-AC Converters for Industrial App	lications
Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or AC-AC) using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed	Real-World Assignment:	
using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms. Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 0 22 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyore Blet Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators), Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 Incole conder or a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or ta	Design and simulate one type of power electronic converter (DC-DC, DC-AC, AC-DC, or	AC-AC)
Exemplars / Practical Applications: DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoclectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 Q2 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Exemplars / Practical Applications:	using simulation tools like MATLAB/Simulink, PSIM, or hardware-based platforms.	,
DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-DC Converters (Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezolectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control	Exemplars / Practical Applications:	
(Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters) Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: 02 hrs. Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Mo	DC-DC Converters (e.g., Buck, Boost, Buck-Boost), DC-AC Converters (Inverters), AC-D	C Converters
Experiment 4 02 hrs. Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Sensors Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocou-) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0). O 2 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control usire ILC O 2 hrs. PLC Programming for Industrial Automation – Basic logic operations (AND, OR, NOT, NAN-) and control industrial actuators like motors, relays, and solenoids. Presemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Panelse. PID Controller Implementation – Tuning and response study of first-order & second-order stress. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using and implement PID controller based hardware. Second order stress. Exemplars / Practical Applications: Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Taires Controller Implementation – Tuning and response study of first-order & second-o	(Controlled Rectifiers), AC-AC Converters (Cyclo-converters, Matrix Converters)	
Design and Implementation of a Temperature and Pressure Monitoring System Using Industrial Sensors (With DAS mechanism) Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Experiment 7 (02 hrs. PID Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 (02 hrs. PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Experiment 4	02 hrs.
Real-World Assignment: Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: 02 hrs. Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs.	Design and Implementation of a Temperature and Pressure Monitoring System Using Indus (With DAS mechanism)	strial Sensors
Design and implement a system using industrial-grade temperature (e.g., RTD, thermocouple) and pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 0 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 0 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Real-World Assignment:	
pressure (e.g., piezoelectric, strain gauge) sensors. Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: 02 hrs. Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: 02 hrs. Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators), Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control Sys	Design and implement a system using industrial-grade temperature (e.g., RTD, thermocoup	le) and
Exemplars / Practical Applications: Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC 02 hrs. Real-World Assignment: 02 brs. Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 Implementation of PID Control for a Closed-Loop Motor Speed Control System 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System 02 hrs. Implementation of PID Control for a Cl	pressure (e.g., piezoelectric, strain gauge) sensors.)
Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation, Air Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Exemplars / Practical Applications:	
Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (Industry 4.0) Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System 02 hrs. Real-World Assignment: 02 hrs. Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator. 02 hrs.	Process Industries (Oil, Gas, and Chemical Plants), HVAC Systems (Heating, Ventilation,	Air
Experiment 5 02 hrs. PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: 02 hrs. Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Conditioning), Power Plants, Food and Pharmaceutical Industries, Smart Manufacturing (In	dustry 4.0)
PLC Programming for Industrial Automation – Basic logic operations and motor control using PLC Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: velop hotor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Experiment 5	02 hrs.
Real-World Assignment: Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 O2 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 O2 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	PLC Programming for Industrial Automation - Basic logic operations and motor control us	ing PLC
Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NAND) and control industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Real-World Assignment:	
Design and to get program to improve out to get optimize (inters) of starts) of starts) and control in industrial actuators like motors, relays, and solenoids. Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: 02 hrs. Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Design ladder logic programs to implement basic logic operations (AND, OR, NOT, NANI) and control
Exemplars / Practical Applications: Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation Experiment 6 O2 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 O2 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	industrial actuators like motors, relays, and solenoids.	
Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Control Panels, Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Keannet is the first of the first o	Exemplars / Practical Applications:	
Bottle Filling and Packaging Lines, HVAC and Building Automation 02 hrs. Experiment 6 02 hrs. PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator. Via process of the server of	Conveyor Belt Automation, Pump Control in Water Treatment Plants, Industrial Motor Cor	ntrol Panels.
Experiment 602 hrs.PID Controller Implementation – Tuning and response study of first-order & second-order systems.Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware.Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in TanksExperiment 702 hrs.Implementation of PID Control for a Closed-Loop Motor Speed Control SystemReal-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Bottle Filling and Packaging Lines, HVAC and Building Automation	,
PID Controller Implementation – Tuning and response study of first-order & second-order systems. Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Experiment 6	02 hrs.
Real-World Assignment: Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	PID Controller Implementation – Tuning and response study of first-order & second-order	systems.
Design and implement PID controllers for first-order and second-order dynamic systems using MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Real-World Assignment:	-
MATLAB/Simulink, LabVIEW, or microcontroller-based hardware. Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Design and implement PID controllers for first-order and second-order dynamic systems up	sino
Exemplars / Practical Applications: Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	MATLAB/Simulink, LabVIEW, or microcontroller-based hardware.	Shig
Temperature Control Systems (e.g., Furnaces, Incubators),Industrial Motor Speed Control, Process Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System 02 hrs. Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Exemplars / Practical Applications:	
Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tanks Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Temperature Control Systems (e.g., Furnaces, Incubators) Industrial Motor Speed Control	Process
Experiment 7 02 hrs. Implementation of PID Control for a Closed-Loop Motor Speed Control System Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Control in Chemical Plants, Autonomous Vehicles & Drones, Liquid Level Control in Tank	(S
Implementation of PID Control for a Closed-Loop Motor Speed Control System Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Experiment 7	02 hrs.
Real-World Assignment: Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Implementation of PID Control for a Closed-Loop Motor Speed Control System	
Develop a closed-loop system using a DC motor (or BLDC/servo motor) with speed feedback via encoder or tachogenerator.	Real World Assignment:	
encoder or tachogenerator.	Near world Assignment.	ok vie
	encoder or tachogenerator	ICK VIA

Exemplars / Practical Applications:	
Conveyor Belt Speed Regulation, CNC Machine Spindle Speed Control, Robotic Arm Join	nt Control,
Electric Vehicle (EV) Traction Motor Control, HVAC Fan Speed Control	
Experiment 8	02 hrs.
Robotic Arm Motion Control Using PID Controller	
Real-World Assignment:	
Model the robotic arm joints as servo or DC motors with position and velocity feedback.	
Exemplars / Practical Applications:	
Industrial Automation and Assembly Lines, Medical Robotics, Space Robotics, Research	and
Education, Agricultural Robotics	
Experiment 9	02 hrs.
Implementation of IoT-Enabled Predictive Maintenance for CNC Machines	
Real-World Assignment:	
Design a system integrating CNC machine sensors (vibration, temperature, spindle load, et	tc.) with IoT
devices for real-time data acquisition.	
Exemplars / Practical Applications:	
Smart Manufacturing Plants, Aerospace Component Fabrication, Automotive Manufacturi	ng, Industria
Equipment Rental Services, Research & Development Facilities	2,
Learning Resources	
Text Books:	
1. Muhammad H. Rashid – Power Electronics: Circuits, Devices, and Applications (Pearso	n)
2. Bimbhra P.S. – Power Electronics (Khanna Publishers)	,
3. Hughes – Electrical and Electronic Technology (Pearson)	
4. Dorf R.C. & Bishop R.H. – Modern Control Systems (Pearson)	
5. Jon Stenerson – Industrial Automation and Process Control (Pearson)	
Reference Books:	(TTT)
1. Mohan, Undeland, Robbins – Power Electronics: Converters, Applications, and Design (2. Bolton W. Mechatronics: Electronic Control Systems in Mechanical and Electrical En	(Wiley)
(Pearson)	gineering
3. Frank D. Petruzella – Programmable Logic Controllers (McGraw-Hill)	
4. R.K. Rajput – Industrial Electronics and Control (S. Chand)	
5. James A. Rehg & Glenn J. Sartori – Industrial Electronics (Pearson)	
MOOC / NPTEL/YouTube Links: -	
1. <u>https://nptel.ac.in/courses/108105088</u> 2. $https://nptel.ac.in/courses/108105088$	
 <u>nttps://www.youtube.com/playIist/list=PLE&F9BF5CB1201D23</u> <u>https://www.youtube.com/watab2w=21:0_VrafC1a_%List=DL_aw1f2NW</u> 	
5. <u>https://www.youtube.com/watch?v=5K9_12ct0J0&fist=PLgwJ16tNK-</u> 2e5Hnu82T1CVI Z8kbZs4Ix8x&indev=?	
4 https://www.youtube.com/watch?v=IVIVtICoHik	
5. https://archive.nptel.ac.in/courses/112/103/112103293/	
6. https://nptel.ac.in/courses/106105195	

Page 33 of 89

Sa	avitribai [Phule Pune I	University		
Second Year of Automation & Robotics Engineering (2024 Pattern)					
VSE231AUR: Workshop Practices					
Teaching Scheme		Credit	Examination Scheme		
Practical: 02 Hours/Week		1	Practical:	25 Marks	
Prerequisite Courses, if any:		<u>.</u>			
 Manufacturing Processes Manufacturing Practice Wo Engineering Physics, Chem Engineering Graphics Engineering Materials and 	orkshop nistry Metallurgy	,			
Course Objectives:	<u>inicialitat gy</u>				
 To understand the basic proforming processes through To acquire skills to produce To UNDERSTAND the pripress operations and manual To understand TIG/ MIG/ MIG/ MIG/ MIG/ MIG/ MIG/ MIG/ M	ocedures, ty demonstra e a compos inciples & facturing / j Resistance/	ypes of equipme tions and/(or) In tite part by man acquire skills to process plans. Gas welding we	ent, tooling used for adustry visits. al process. produce component elding techniques.	sand casting and metal	
Course Outcomes:					
 After successful completion of the CO1. IDENTIFY and ANALY of mechanical workshops ar posters or reports. CO2. APPLY the fundament product designs, supported vectors (CO3. PLAN and EXECUTE machining operations while and assembly requirements) 	course, lea YZE safety nd effective tal princip with suitab E the prod e selecting s.	rner will be abl standards and ely communicat les of design le real-world ex uction of an a g appropriate r	e to: safety measures app e these through the to create efficient camples. assembly job by p naterials and proc	blicable to various sections preparation of informative , user-friendly, and safe erforming a sequence of esses to meet functional	
	Lis	t of Experime	nts		
Experiment 1				02 hrs.	
Study and analyze the safety stand workshop, prepare informative pos Real World Assignment 1. Prepare a report/presentation canters, etc.	ards and sa ters or com n on safety	fety measures in prehensive repo precautions in	nplemented in vario orts. workshop/industry/	us sections of a mechanica	
Exemplars / Practical Application	ns				

Mechanical workshop layout planning, Machine tool safety implementation, Welding and fabrication safety management, Material handling and storage safety, Personal protective equipment (PPE) compliance and training

Experiment 2	02 hrs.
Demonstration/Study of Industrial robot safety considerations, standards and best p	oractices
Real World Assignment	
1 Prepare a report/presentation on safety precautions while operating Robotic syste	ems
Exemplars / Practical Applications	
Removiment 2	12 have
experiment 5	12 nrs.
Production/machining of assembly job containing 2-3 components and suitable for ass	embly with standar
components viz. nut, screw, bearing etc. consisting at least 4-5 operations from the follo	owing list:
. Prepare a report/presentation on safety precautions in workshop/industry/power pl etc.	lants/service canters
2. Raw material selection (Suitable for job in assignment)	
B. Raw material preparation like hacksaw cutting, etc.	
. Rough turning on lathe/CNC	
5. Rough milling on Milling machine or VMC viz. machining flats, gear cutting, keyw	vays, etc.
5. Drilling/tapping/threading	
7. Finishing on CNC/VMC (or combined operations from step 3 to 6 on CNC/VMC)	
8. Surface finishing using Grinding/Polishing/Buffing, etc.	
D. Surface treatment for corrosion/wear resistance, aesthetics, etc.	
Real World Assignment	
 a) Selection of suitable Engineering material viz. ferrous/non-ferrous/non-metallie easily in market at least cost considering energy & environmental aspects of Green b) Select appropriate form of material for job under consideration e.g. Casting/Forg Bar/Sheet metal/flats, etc. (Refer Machinery Handbook/Westermann Table, or a sources, etc.) c) Plan machining using Process Sheets d) Select appropriate machines, cutting tools & machining parameters viz. Cutting Spe (mm/rev or mm/minute) & Depth of Cut (DoC) e) Calculate Machining Power requirement, Material Removal Rate (MRR) and rest 	c material availabl Manufacturing ging/Round Bar/He ny available reliabl eed (Vc m/min), fee ulting Surface finis
using online machining calculators available on cutting tools manufacturers sites	
f) Select appropriate surface finishing process for surface protection for Surface treatm component manufactured above processes using grinding/ cylindrical grinding burnishing operation	nent/finishing of any g / buffing/honing
g) Estimate material & machining costs	
Experiment 4	04 hrs.
Fabrication of a component by joining two similar or dissimilar metals using TIG, N	MIG, or gas weldin
echniques.	-
Real World Assignment	
a) Comparative study of soldering, brazing & welding processes and respective	e applications
b) Study of defects and case studies	
c) A job drawing to be prepared by an individual institute with details of we	elding process
parameters with weld joint design such as edge preparation, type and size of e	electrode used,
parameters with were joint design such as edge preparation, type and size of e	

Exemplars / Practical Applications	
Automotive exhaust system fabrication, Aerospace frame assembly, Bicycle frame	welding, Industrial
piping and tubing fabrication, Custom metal furniture manufacturing	
Experiment 5	04 hrs.
Manufacturing one engineering component using casting/forging in available worksho	op facilities of any
engineering material like wax, tin, etc.	
OR	
Observe and demonstrate the manufacturing processes of castings and forgings during a	n industrial visit.
Real World Assignment	
i. Casting considerations, study of defects in the cast product.	
ii. Demonstration of defects/temperature distributions using suitable mold flow and	alysis or equivalent
simulations	
iii. Industrial visit report in case of demonstration	
Exemplars / Practical Applications	
Prototype component casting, Decorative metal item fabrication, Educational model ma	king, Small gear or
pulley forging, Custom bracket manufacturing	
Experiment 6	
Experiment 0	04 hrs.
Real World Assignment	04 hrs.
Experiment o Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts.	04 hrs.
Experiment of Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts. 2. Manufacture a simple component using a press machine involving operations	04 hrs. such as punching,
 Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts. 2. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. 	04 hrs. such as punching,
 Real World Assignment Calculation on sheet metal layout, finishing process of sheet metal parts. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR	04 hrs.
 Real World Assignment Calculation on sheet metal layout, finishing process of sheet metal parts. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components 	04 hrs. such as punching, during an
 Real World Assignment Calculation on sheet metal layout, finishing process of sheet metal parts. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. 	04 hrs. such as punching, during an
 Experiment 0 Real World Assignment Calculation on sheet metal layout, finishing process of sheet metal parts. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. Experiment 7 	04 hrs. such as punching, during an 04 hrs.
Experiment 0 Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts. 2. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. Experiment 7 Real World Assignment:	04 hrs. such as punching, during an 04 hrs.
Experiment 0 Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts. 2. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. Experiment 7 Real World Assignment: Self-study – Students will choose an engineering-related domestic product compose	04 hrs. such as punching, during an 04 hrs. ed of at least 4–5
Experiment 0 Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts. 2. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. Experiment 7 Real World Assignment: Self-study – Students will choose an engineering-related domestic product compose components and prepare detailed material selection and manufacturing plans, considering plans, cons	04 hrs. such as punching, during an 04 hrs. ed of at least 4–5 ng a broad range of
 Real World Assignment Calculation on sheet metal layout, finishing process of sheet metal parts. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. Experiment 7 Real World Assignment: Self-study – Students will choose an engineering-related domestic product compose components and prepare detailed material selection and manufacturing plans, considering materials including ferrous and non-ferrous metals, as well as non-metallic materials. 	04 hrs. such as punching, during an 04 hrs. ed of at least 4–5 ng a broad range of
Experiment 0 Real World Assignment 1. Calculation on sheet metal layout, finishing process of sheet metal parts. 2. Manufacture a simple component using a press machine involving operations blanking, bending, and shearing, using any suitable engineering material. OR Observe and demonstrate the manufacturing processes of sheet metal components industrial visit. Experiment 7 Real World Assignment: Self-study – Students will choose an engineering-related domestic product compose components and prepare detailed material selection and manufacturing plans, consideri materials including ferrous and non-ferrous metals, as well as non-metallic materials. * Students are required to prepare a brief report summarizing the processes studied thr	04 hrs. such as punching, during an 04 hrs. ed of at least 4–5 ng a broad range of oughout the course

Students are expected to select available products viz.

- i. Domestic products viz. Oven/Microwave/Blender/Cooker/Kitchen Sink, Kettle, etc.
- ii. Robotic floor cleaner, Electric razors, etc.

iii. Ceiling fans/table fan/exhaust fans, etc.

***Note: Students can choose engineering products of their interest consisting of 4-5 components manufactured by verity of manufacturing processes and materials.
Savitribai Phule Pune University Second Year of Automation & Robotics (2024 Pattern)				
HSS	SM-232-AUR: I	Entreprene	urship Development and	d Innovation
Teaching	g Scheme	Credit	Examination Sci	heme
Theory	1 Hours/Week	1	ССЕ	25 Marks
Practical	NA	1	End-Semester	NA
Prerequisite Co	urses, if any:			
• None (Op	ben to all engineerin	ng branches)		
 APPLY in DESIGN EVALUA COLLAB 	novation technique a viable business m TE the feasibility of ORATE in teams t	es to develop nodel using str of a startup id o develop and	solutions to real-world proble ructured tools. ea from technical, financial, a l pitch an entrepreneurial solu	ems. nd market perspectives. tion.
After successful completion of the course, learner will be able to: CO1: DESCRIBE entrepreneurial traits and innovation processes (Remember/Understand), and IDENTIFY business opportunities through design thinking (Apply). CO2: DEVELOP a lean business model and MVP (Apply/Analyze) and CREATE a startup pitch and demonstrate entrepreneurial mindset (Create)				
Unit I Ent	renreneurial Min	dset Creativ	ity and Innovation	(08 Hours)
 Entreprer Types of Innovatio Design T Creativity Success s Case stud 	neurial mindset: cur entrepreneurs – Te on types: product, so hinking: Empathizo y tools: Mind Mapp tories from Indian lies: Innovative Ind d Exercises (Any 7	iosity, resilie chnical, Non- ervice, proces e, Define, Idea oing, SCAMP innovators ian products/s Three, Comm	nce, risk-taking, leadership technical, Social, Entreprener s, frugal (Jugaad) innovation ate, Prototype, Test ER, TRIZ startups nunity Engagement Project is o	ır compulsory)
1. Guest Session + Reflection Report				
Application Task: Study style. 2. Case Study Activity: • The p • Type • Entre	on: Invite an Indian e lents write a 1-page f y Presentation Select an Indian start oroblem it solves of innovation (produ- preneurial mind-set	entrepreneur (e. reflection/ Quiz up and analys uct, process, fru of the founder	.g., local start up founder or alur z on entrepreneurial mind-set, ris se: ugal, etc.)	nni) for a guest talk. sks taken, and innovation
Deliverab 3. Present an	y one Course Project	nute video or a ct/ Community	y Engagement Project(CEP) in	context with Design
Thinking Activity: In sn exam stress, lo	nall groups, students ng queues, absenteei	will solve a co sm, lack of sea	mmon college problem (e.g., can ting, etc.) using the Design Thin	nteen cleanliness, Wi-Fi issues, king process in 45–60 minutes:

a. Empathize $(5-10 \text{ min})$: Talk to 2–3 students or staff to understand the issue					
b. Define (5 min): Clearly write the problem in one sentence					
d. Prototype $(10-15 \text{ min})$: Create a quick sketch model or chart of the best solution					
e. Test (10 min): Share the idea with another group and collect feedback					
Deliverable: Student should present 1 page summary/ poster/ prototype of the Course Project	t / Community				
Engagement Project(CEP) in context with Design Thinking					
 4. Campus Creativity Challenge Application: Use Mind Mapping to improve a college service (e.g., library hours, parking space). Apply SCAMPER to redesign a student-used item (e.g., backpack, ID card). Use TRIZ to resolve a contradiction (e.g., "How to make exams easy but still effective"). Use Design Thinking process to solve college problem (e.g., canteen cleanliness, Wi-Fi issues, exam stress, long queues, absenteeism, lack of seating, etc) 					
Deliverable: Student should present 1 page summary/ poster/ prototype of the Course Project in of Thinking.	context with Design				
Exemplars / Practical Applications: Problem solving in Startups					
Unit II Opportunity Identification and Business Modelling	(08 Hours)				
Opportunity Recognition and Idea Generation - Problem identification and need a	nalysis				
• Market research: tools and techniques					
Business Model Canvas: customer segments, value proposition, channels					
• Lean Startup methodology & Minimum Viable Product (MVP)					
Business plan components and structure					
• Cost estimation, revenue models, and unit economics					
• Funding options: Government schemes (Startup India MSME) VC Angel Invest	tors				
 Crowd funding 					
 Basics of financial literacy: Profit-Loss. Break-even. cash flow. 					
Assignments and Exercises (Any Three)					
1. Conduct Start-up Financials Workshop					
Application: Hands-on session using a fictional start-up (e.g., chai café):					
Calculate fixed and variable costs					
• Identify breakeven point					
• Build a simple cash flow chart for 6 months	ion				
2. Government Funding Scheme Research	1011.				
Application:					
• Each group explores one government scheme (e.g., Start-up India Seed Fund, MU PMEG Scheme, MSME credit)	UDRA loan,				
• Analyse eligibility, application process, benefits, and success stories					
Activity: Identify 3 real-life problems a community face (e.g. water waster long que	ues, and costly				
transportation) or college.					
 Conduct informal interviews or surveys to understand the need 					
 Analyse user pain points and existing gaps. 					
• Select one high-potential problem and formulate an idea to solve it.					
Deliverable: Opportunity report with problem statement, user quotes, and proposed idea	ι.				

4. Business Model Canvas + MVP Design

Activity: Choose a start-up idea and:

- Create a detailed Business Model Canvas (cover all 9 blocks).
- Develop a basic Minimum Viable Product (MVP) this could be a sketch, clickable prototype, or service flow.

Deliverable: BMC template filled + MVP mock-up/photo.

- 5. Business Plan + Funding Strategy + Pitch
 - Activity: Prepare a business plan including:
 - Executive summary
 - Product/service details
 - Market research insights
 - Costing and basic unit economics
 - Revenue model
 - Funding plan (choose and justify one: Government scheme, VC, angel, crowd funding) • Prepare elevator pitch / 1 minute pitch

Deliverable: 4–6 page business plan document + pitch deck (5–7 slides).

Outcome: Awareness of the Government start-up funding schemes and prepare a report of 3 to 4 pages. **Exemplars** / **Practical Applications:** Arranging Mock Pitching Competitions

Learning Resources

Text Books:

- 1. Entrepreneurship Development S.S. Khanka
- 2. Entrepreneurship Development and Small Business Enterprises Poornima M. Charantimath
- 3. Entrepreneurship: New Venture Creation– David H. Holt (Indian Edition by Vikas Publishing)
- 4. Innovation and Entrepreneurship Dr. R.G. Desai
- 5. Essentials of Entrepreneurship and Small Business Management Nandan H.

Reference Books:

- 1. The Lean Startup Eric Ries
- 2. Disciplined Entrepreneurship: 24 Steps to a Successful Startup Bill Aulet (MIT)
- 3. Zero to One Peter Thiel
- 4. The Startup Owner's Manual Steve Blank & Bob Dorf
- 5. Jugaad Innovation Navi Radjou, Jaideep Prabhu, and Simone Ahuja
- 6. Stay Hungry Stay Foolish Rashmi Bansal
- 7. Connect the Dots Rashmi Bansal
- 8. Innovation and Entrepreneurship Peter F. Drucker
- 9. Startup Sutra Rohit Prasad
- 10. Dream With Your Eyes Open Ronnie Screwvala

MOOCs / NPTEL / SWAYAM Courses (Free): -

- 1. Entrepreneurship Essentials Offered by IIT Kharagpur (NPTEL) Duration: 8 weeks | Level: UG/PG Covers: Entrepreneurial process, business models, marketing, funding.
- 2. Entrepreneurship and Innovation IIT Roorkee Duration: 12 weeks Covers: Types of innovation, design thinking, ecosystem, and scaling.
- 3. Product Management and Entrepreneurship IIM Bangalore Duration: 8 weeks
 - Focus: Customer discovery, MVPs, and product-led growth.
- 4. Innovation, Business Models and Entrepreneurship IIT Madras Explores innovation in products and services, and lean canvas approach.
- 5. Design Thinking A Primer IIT Madras

	Ideal fo	r teaching creativity and problem-solving using design thinking.
6.	Course	ra: Design Thinking for Innovation by University of Virginia
7.	edX: Er	ntrepreneurship in Emerging Economies by Harvard
VonT	uha Ch	annala / Dlavlista
roure	ube Cha	annels / Flaynsts :
1.	Startup	India Official Channel •
2.	Regular	r videos on policies, funding opportunities, and success stories.
	a.	IIT Madras – NPTEL Entrepreneurship Playlist
		Covers fundamentals of startup creation and innovation strategy.
	b.	Dr. HYPERLINK "https://www.youtube.com/user/MrVivekBindra"Vivek HYPERLINK
		"https://www.youtube.com/user/MrVivekBindra" HYPERLINK
		"https://www.youtube.com/user/MrVivekBindra"Bindra HYPERLINK
		"https://www.youtube.com/user/MrVivekBindra" - Entrepreneur HYPERLINK
		"https://www.youtube.com/user/MrVivekBindra"& HYPERLINK
		"https://www.youtube.com/user/MrVivekBindra" Motivational Speaker
	с.	Popular in India; motivational and strategic content (more business-oriented).
	d.	Desh HYPERLINK "https://www.youtube.com/@DeshDeshpandeFoundation" Deshpande
		Foundation
		Videos on grassroots entrepreneurship and social innovation.
		č i i

3. Stanford HYPERLINK "https://www.youtube.com/user/ecorner"eCorner

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)				
VEC233AUR: Universal Human Values				
Т	Teaching Scheme Credit Examination Scheme		on Scheme	
Theory:	02 Hours/Week		CCE:	15 Marks
Practical:		2	End-Semester:	35 Marks
Prerequisite UHV 	• Courses, if any: -1 of Student Induction Progr	am (SIP) (desirable)		
Course Obje 1. To HI comp 2. To EI 3. To FA towar 4. To EI 5. To EZ defini 6. To PF orderl Course Oute After success CO1- RECO potential to e CO2- EXPLA harmony in th CO4- INTER entire existen CO5- DRAW technologies	ectives: ELP the students develop a hole lementarity between values an LABORATE on 'Self-explora ACILITATE the understandid ds family and society. LABORATE on the salient as KPLAIN how the Right under tiveness of Ethical human con ROVIDE the vision for a holis ly life. comes: sful completion of the course, GNIZE the concept of self-ex- explore on their own right. ORE the human being as the early AIN relationship between one family CPRET the interconnectedness ice Vethical conclusions in the lig production systems and man	olistic, humane world- nd skills to ensure mu- tion' as the process for ng of harmony at va pects of harmony in n- standing forms the ba nduct. tic way of living and learner will be able to ploration as the proce e coexistence of self e self and the other so s, harmony and mutua- ht of Right understand agement models	vision, and appreciate tual happiness and pros or Value Education arious levels starting f ature and the entire exi sis of Universal human facilitate transition from on on on and body to see thei elf as the essential part al fulfilment inherent i ding facilitating the dev	the essential sperity from self and going stence a values and m chaotic life to an and see they have the r real needs / basic t of relationship and n the nature and the velopment of holistic
		Course Contents		1
Unit I	Introduction to Value Educ	ation		(03 Hours)
 Understanding Value Education Self-exploration as the Process for Value Education Continuous Happiness and Prosperity - the Basic Human Aspirations and their Fulfilment Right Understanding, Relationship and Physical Facility Happiness and Prosperity - Current Scenario Method to Fulfil the Basic Human Aspirations 				
Exemplars / Explore real	life applications using Practic	al No. 1. 2. 3. 4		
Unit II	Harmony in the Human B	eing		(03 Hours)
 Under Distin The B Under Harm 	rstanding Human being as the aguishing between the Needs Body as an Instrument of the S rstanding Harmony in the Self ony of the Self with the Body	Co-existence of the S of the Self and the Bo Self	Self and the Body dy	

Exemplars / Practical Applications Explore real life applications using Practical No. 5, 6. Unit III Harmony in the Family and Society (03 Hours) Iter a function of the family and Society (03 Hours) Iter a function of the Family and Society (03 Hours) Values in Human-to-Human Relationship Understanding Harmony in the Society Vision for the Universal Human Order Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at Al Levels The Holistic Practical Applications Exemplars / Practical Applications Exemplars / Practical Applications of the Holistic Understanding - Professional Ethics Inperiod of Harmony in Existence Exemplars / Practical Applications Exemplars / Practical Applications Inperiod of Harmony in Existence Exemplars / Practical Applications	Progra	amme to Ensure self-regulation and Health			
Explore real life applications using Practical No. 5, 6. (03 Hours) • Harmon'n in the Family and Society (03 Hours) • Harmon'n in the Family and Society (03 Hours) • "Trust' - the Foundational Value in Relationship - • Values in Human-to-Human Relationship - • Understanding Harmony in the Society - • Vision for the Universal Human Order - Exemplars / Practical Applications (03 Hours) • Understanding Harmony in the Nature (Existence) (03 Hours) • Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature • Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels • The Holistic Perception of Harmony in Existence (03 Hours) Exemplars / Practical Applications (03 Hours) • Basis for Universal Human Values (03 Hours) • Definitiveness of (Ethical) Human Conduct (03 Hours) • Professional Ethics in the light of Right Understanding • A Basis for Universal Human Values • Strategies for Tunsting to towards Value-based Life and Profession Explore real life applications using Practical No. 12, 13, 14 Exemplars / Practical Applica	Exemplars /	Practical Applications			
Unit III Harmony in the Family and Society (03 Hours) • Harmony in the Family - the Basic Unit of Human Interaction • ''Trust' - the Foundational Value in Relationship • ''Trust' - the Foundational Value in Relationship • • ''Respect' - as the Right Evaluation • • Values in Human-to-Human Relationship • • Understanding Harmony in the Society • • Vision For the Universal Human Order (03 Hours) Exemplars / Practical Applications (03 Hours) • Understanding Harmony in the Nature (03 Hours) • Understanding Harmony in the Nature (03 Hours) • Understanding Harmony in the Nature interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature • Interconnectedness, self-regulation of Harmony in Existence (03 Hours) Exemplars / Practical Applications (03 Hours) Explore real life applications using Practical No. 9,10,11 (03 Hours) • Inderstanding • A Basis for Universal Human Values (03 Hours) • Definitiveness of (Ethica) Human Conduct • Professional Ethics (03 Hours) •	Explore real l	ife applications using Practical No. 5, 6.			
 Harmony in the Family - the Basic Unit of Human Interaction "Trust' - the Foundational Value in Relationship "Trust' - the Foundational Value in Relationship "Respect '- as the Right Evaluation Values in Human-to-Human Relationship Understanding Harmony in the Society Vision for the Universal Human Order Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Pulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications using Practical No. 9,10,11 Unit V Implications of the Holistic Understanding - Professional Ethics Look Uohity A Basis for Universal Human Values Definitiveness of (Ethica) Human Conduct Professional Ethics, in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Experder Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Fractical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.org/movies/stuff.scuff.o	Unit III	Harmony in the Family and Society	(03 Hours)		
 "Trust' - the Foundational Value in Relationship "Respect' - as the Right Evaluation Values in Human-to-Human Relationship Understanding Harmony in the Society Vision for the Universal Human Order Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Explore real life applications using Practical No. 9,10,11 Mit V Implications of the Holistic Understanding - Professional Ethics Look 003 Hours) Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life aphications using Practical No. 12, 13, 14 Exemplars / Practical Applications from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyof	• Harme	ony in the Family - the Basic Unit of Human Interaction			
 Respect - as the Right Evaluation Values in Human-to-Human Relationship Understanding Harmony in the Society Vision for the Universal Human Order Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications of the Holistic Understanding - Professional Ethics Look 04 Hours) Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Explore real life applications using Practical No. 12, 13, 14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: h	 "Trust 	' - the Foundational Value in Relationship			
 Values in Human-to-Human Relationship Understanding Harmony in the Society Vision for the Universal Human Order Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications using Practical No. 9, 10, 11 Unit V Implications of the Holistic Understanding - Professional Ethics (03 Hours) Basis for Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Professional Explore real life applications using Practical No. 12, 13, 14 List of Practical Practical Applications Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They	• 'Respe	ect' - as the Right Evaluation			
 Understanding Harmony in the Society Vision for the Universal Human Order Exemplars / Practical Applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications using Practical No. 9,10,11 Implications of the Holistic Understanding - Professional Ethics color Definitiveness of (Ethica) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Explore real life applications using Practical No. 12,13,14 Exemplars / Practical Applications from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciounsess Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that la	• Value	s in Human-to-Human Relationship			
 Vision for the Universal Human Order Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications of the Holistic Understanding - Professional Ethics Look Mit V Implications of the Holistic Understanding - Professional Ethics Look Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Franctical Applications systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12, 13, 14 List of Practicals Fractical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofs	• Under	standing Harmony in the Society			
Exemplars / Practical Applications Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) • Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature • Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels • The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications of the Holistic Understanding - Professional Ethics Look (03 Hours) • Basis for Universal Human Values (03 Hours) • Definitiveness of (Ethical) Human Conduct • Professional Ethics in the light of Right Understanding • A Basis for Universal Human Values • Definitiveness of (Ethical) Human Conduct • Professional Ethics in the light of Right Understanding • A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order • Holistic Technologies, Production Systems and Management Models Typical Case Studies • Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, yo	Vision	n for the Universal Human Order			
Explore real life applications using Practical No. 7, 8 Unit IV Harmony in the Nature (Existence) (03 Hours) • Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature • Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications using Practical No. 9,10,11 Unit V Implications of the Holistic Understanding - Professional Ethics (03 Hours) • Basis for Universal Human Values (03 Hours) • Definitiveness of (Ethical) Human Conduct (03 Hours) • Professional Ethics in the light of Right Understanding (03 Hours) • A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order (03 Hours) • Holistic Technologies, Production Systems and Management Models Typical Case Studies (03 Hours) • Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start expl	Exemplars /	Practical Applications			
Unit IV Harmony in the Nature (Existence) (03 Hours) • Understanding Harmony in the Nature • Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature • Realizing Existence as Co-existence at All Levels • The Holistic Perception of Harmony in Existence • The Holistic Perception of Harmony in Existence • The Holistic Perception of Harmony in Existence Exemplars / Practical Applications (03 Hours) Explore real life applications using Practical No. 9,10,11 (03 Hours) • Dative Realizing Existence as Co-existence at All Levels (03 Hours) • Mult V Implications of the Holistic Understanding - Professional Ethics hook (03 Hours) • Definitiveness of (Ethical) Human Conduct • Definitiveness of (Ethical) Human Conduct • Ordersional Ethics in the light of Right Understanding • A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order • Holistic Technologies, Production Systems and Management Models Typical Case Studies • Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Ext of Practicals Expected Outcome: The students start exploring themselves; get comfortable with each or and with the teacher and start appreciating the need and relevance of the course. Practical 1: Shari	Explore real I	ite applications using Practical No. 7, 8			
 Understanding Harmony in the Nature Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications of the Holistic Understanding - Professional Ethics Look Implications of the Holistic Understanding - Professional Ethics Look Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Explore real life applications using Practical No. 12,13,14 Explore real life applications using Practical No. 12,13,14 Fractical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Experted Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff?". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understa	Unit IV	Harmony in the Nature (Existence)	(03 Hours)		
 Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications of the Holistic Understanding - Professional Ethics Look Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Explore real life applications using Practical No. 12,13,14 Explore real life applications using Practical No. 12,13,14 Explore real fulfillment? Explore for the students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff?". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofsuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	• Under	standing Harmony in the Nature			
 Realizing Existence as Co-existence at All Levels The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications using Practical No. 9,10,11 Implications of the Holistic Understanding - Professional Ethics 	• Interc	onnectedness, self-regulation and Mutual Fulfilment among the Four Order	s of Nature		
 The Holistic Perception of Harmony in Existence Exemplars / Practical Applications Explore real life applications using Practical No. 9,10,11 Implications of the Holistic Understanding - Professional Ethics Look Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Explore real I: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	• Realiz	ting Existence as Co-existence at All Levels			
Exemplars / Practical Applications Explore real life applications using Practical No. 9,10,11 Implications of the Holistic Understanding - Professional Ethics Look (03 Hours) • Basis for Universal Human Values • Definitiveness of (Ethical) Human Conduct • Professional Ethics in the light of Right Understanding • A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order • Holistic Technologies, Production Systems and Management Models Typical Case Studies • Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 • Exemplars / Practical Applications from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Explore real life appleciations start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	• The H	olistic Perception of Harmony in Existence			
Explore real life applications using Practical No. 9,10,11 (03 Hours) Unit V Implications of the Holistic Understanding - Professional Ethics Look (03 Hours) • Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct (03 Hours) • Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies • Strategies for Transition towards Value-based Life and Profession Explore real life applications Explore real life applications using Practical No. 12,13,14 Extend of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause <td>Exemplars /</td> <td>Practical Applications</td> <td></td>	Exemplars /	Practical Applications			
Unit V Implications of the Holistic Understanding - Professional Ethics (03 Hours) • Basis for Universal Human Values • Definitiveness of (Ethical) Human Conduct • Professional Ethics in the light of Right Understanding • A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order • Holistic Technologies, Production Systems and Management Models Typical Case Studies • Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Itist of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	Explore real I	ife applications using Practical No. 9,10,11			
 Basis for Universal Human Values Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	Unit V	Look	(03 Hours)		
 Definitiveness of (Ethical) Human Conduct Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Dractical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfill these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	Basis f	For Universal Human Values			
 Professional Ethics in the light of Right Understanding A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i> : The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	• Definit	tiveness of (Ethical) Human Conduct			
 A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 Description Description Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i> : The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	Profes	sional Ethics in the light of Right Understanding			
 Holistic Technologies, Production Systems and Management Models Typical Case Studies Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	A Basi	s for Humanistic Education, Humanistic Constitution and Universal Human Order	r		
 Strategies for Transition towards Value-based Life and Profession Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	Holisti	c Technologies, Production Systems and Management Models Typical Case Studi	ies		
 Exemplars / Practical Applications Explore real life applications using Practical No. 12,13,14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	Strateg	ties for Transition towards Value-based Life and Profession			
Explore real life applications using Practical No. 12, 13, 14 List of Practicals Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? Expected Outcome: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) Expected Outcome: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	Exemplars /	Practical Applications			
 Practical 1: Sharing about Oneself Introduction of students with following points yourself, family, friends, achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	Explore real I	If applications using Practical No. 12,13,14			
 achievements and failures, your aspirations from life. How do you expect to fulfil these aspirations and live a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	Draatical 1.	List of Practicals	olf family friands		
 a life of fulfillment? <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	achievements	and failures, your aspirations from life. How do you expect to fulfil these a	en, family, filenus,		
 <i>Expected Outcome</i>: The students start exploring themselves; get comfortable with each other and with the teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	a life of fulfi	lment?			
 teacher and start appreciating the need and relevance of the course. Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i>: The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause 	Expected Oi	<i>ttcome</i> : The students start exploring themselves; get comfortable with each	other and with the		
Practical 2: Exploring Human Consciousness Watch and discuss the documentary video "Story of Stuff". It is a about the materials economy – its motivation, process and outcome. (Source: http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	teacher and s	tart appreciating the need and relevance of the course.			
It is a about the materials economy – its motivation, process and outcome. (Source: <u>http://storyofstuff.org/movies/story-of-stuff</u>) <i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	Practical 2:	Exploring Human Consciousness Watch and discuss the documentary vide	o "Story of Stuff".		
http://storyofstuff.org/movies/story-of-stuff) <i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	It is a a	bout the materials economy – its motivation, process and o	utcome. (Source:		
<i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being; followed by relationship and physical facility. They also start feeling that lack of understanding of human values is the root cause	http://storyofstuff.org/movies/story-of-stuff)				
values is the root cause	<i>Expected Outcome</i> : The students start finding that right understanding is the basic need of human being;				
	Iollowed by I	relationship and physical facility. They also start feeling that lack of under	standing of human		
	values is the	ioor cause			

Practical 3: Exploring right understanding Make a list of your desires. Now for each item on the list, find out what would be necessary to fulfil it, i.e. will it require: (a) Right understanding? (b) Relationship (right feeling)? (c) Physical facility?

Expected Outcome: Students start feeling that lack of understanding of human values is the root cause of all problems and the sustained solution could emerge only through understanding of human values and value-based living.

Practical 4: Exploring Natural Acceptance Observation within the faculty of 'Natural Acceptance', based on which you can verify what is right or what is not right for you. Make a list of the problems in your family. For each problem, find out the most significant reason: is it related to lack of right understanding, lack of feelings in relationship or lack of physical facility? Also, find out how much time and effort you have devoted for each in the last one week.

Expected Outcome: The students are able to see that self-verification must be based on their natural acceptance. In many cases, their actual living is not in accordance with their natural acceptance. In addition, lack of feeling in relationship is the major cause of problems in their family and with friends.

Practical 5: Exploring the difference of Needs of Self and Body Take the list of desires you made in Practical 2. Update it if required. Now classify the desires as being related to the need of the Self or need of the Body.

Expected Outcome: The students are able to relate their desires to need of the Self and the Body distinctly. They are able to see that the Self and the Body are two distinct realities, and large parts of their desires are related to the need of the Self (and not the Body).

Practical 6: Exploring Sources of Imagination in the Self Recall the times that your body has been ill (in disharmony) in the last 3 years. What steps were taken to restore the harmony of the Body? If you were to take full responsibility for your body, (i.e. you had the feeling of self-regulation), what kind of daily schedule would you have? Approximately how much time would you allocate for keeping your body in good health? *Expected Outcome*: The students are able to list down activities related to proper upkeep of the Body and practice them in their daily routine. They are also able to appreciate the plants growing in and around the campus, which can be beneficial in maintaining their health and even curing common ailments.

Practical 7: Exploring the Feeling of Trust Show & discuss the video "Right Here Right Now". It is a short film directed by Anand Gandhi about human behavior and its propagation.

Part 1: <u>https://www.youtube.com/watch?v=OVAokeqQuFM</u>

Part 2: <u>https://www.youtube.com/watch?v=gIYJePEnvUY</u>).

Expected Outcome: The students are able to see that the natural acceptance (intention) of everyone is to be happy and make others happy! It is the competence is lacking in themselves and in others. They are able to distinguish between reaction and response, appreciate the need for 100% response in human interaction and make effort towards it.

Practical 8: Exploring the Feeling of Respect List out ten or more of your interactions with other people in your family and friends in the last one week. Now analyze these interactions were over-evaluation, under/ otherwise evaluation or right evaluation of the other? In each interaction, were you comfortable within, uncomfortable within or unaware of your state?

Expected Outcome: The students are able to see that respect is the right evaluation (of intention and competence). Only right evaluation leads to fulfillment in relationship. Over evaluation leads to ego and under/otherwise evaluation leads to depression.

Practical 9: Exploring Systems to fulfil Human Goal Assuming that you would like to see your hostel/ educational institution/ workplace/ neighborhood as a model of human society, write down its goal(s) and the system to achieve these goals.

Expected Outcome: The students are able to see that as a family, a society, the comprehensive human goal is naturally acceptable to all. They are able to see that the systems required for their fulfilment include; Education-Sanskar, Health Self-regulation, Production-Work, Justice-Preservation and Exchange-Storage. Meaningful participation by every individual, every family, every family cluster... every village, town, city... country and the whole world is required in these systems for the human goals to be fulfilled.

Practical 10: Exploring the Four Orders of Nature Watch and discuss the documentary video "An Inconvenient Truth". It is about global climate change presented by Former US Vice President Al Gore. He raises the question "What were you doing when you had the time to do something?" (Source: <u>http://an-inconvenient-truth.com/</u>)

Expected Outcome: The students are able to appreciate the interconnectedness, interdependence and the relationship of mutual fulfilment existing in nature. They are able to see that they have a natural acceptance to participate in a mutually fulfilling manner in nature.

Practical 11: Exploring Co-existence in Existence Observe your Self. Are you in space? Are you getting energy from the body? Is your energy dependent on the body? When your body is sick, does your energy to think diminish? Are you energized in space? Is the body dictating you? Are you self-organized in space? *Expected Outcome*: The students are able to obtain a holistic vision about the existence. It is in the form of co-existence, rather than a chaos. Every unit is energized, self-organized and is participating with other units in an orderly manner for mutual-fulfilment. It is only the human being without right understanding, which is violating this underlying co-existence. They are able to appreciate the need to understand the co-existence in existence.

Practical 12: Exploring Ethical Human Conduct Watch and discuss the video "Hiware Bazaar". It is a documentary about a progressive village in Maharashtra, India about how good governance, along with the people of the village have made significant change in their society

(Source: https://www.youtube.com/watch?v=cb0Qvh9BJ0s)

Expected Outcome: The students are able to clearly visualize the co-relation between lack of Human Values and the prevailing problems. They are also able to visualize tangible steps and a roadmap for moving in the cherished direction – for a humane society.

Practical 13: Exploring Humanistic Models in Education By careful analysis, identify some important features to make our education more humanistic. What are the right expectations in terms of the outcome from humanistic education? Explain with justification.

Expected Outcome: The students are able to detail out various social systems essential for their own fulfilment, as well as the fulfilment of future generations. In particular, they are able to visualize the education system required for individual, and then societal transformation. They are also able to appreciate those many efforts made in the tradition that were in line with desirable human goals. Thus, they are able to learn from tradition and develop a deep sense of gratitude for the effort, for the people, for the tradition, culture etc.

Practical 14: Exploring Steps of Transition towards Universal Human Order Suggest ways in which you can use your knowledge of Technology/ Engineering/ Management/Medicine etc. for universal human order, from your family order to the world family order. Evaluate your state before and after the course in terms of (a) Thought (b) Behavior (c) Work (d) Realization

Expected Outcome: The students are able to visualize an appropriate utilization of the knowledge in their respective streams to ensure mutually enriching and sustainable systems. They are able to sincerely evaluate the course and the transformation achieved in this process. They are also able to make use of this understanding for moving towards a happy and prosperous life, including an ethical conduct of their profession

Learning Resources

Text Books:

- 1. A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, GP Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-7-3 (Printed Copy), 978-81-957703-6-6 (e-book)
- 2. Teacher's Manual for A Foundation Course in Human Values and Professional Ethics, RR Gaur, R Asthana, GP Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-5-9 (Printed Copy), 978-81-957703-0-4 (e-Book)

Reference Books:

- 1. P. L. Dhar, R. R. Gaur (1990) Science and Humanism, Commonwealth Publishers.
- 2. A. Nagaraj (1999) Jeevan Vidya: Ek Parichaya, Jeevan Vidya Prakashan, Amarkantak.
- 3. B. P. Banerjee (2005) Foundations of Ethics and Management, Excel Books.
- 4. A. N. Tripathy (2003) Human Values, New Age International Publishers.
- 5. E. G. Seebauer & Robert L. Berry (2000) Fundamentals of Ethics for Scientists & Engineers, Oxford University Press.
- 6. B. L. Bajpai (2004) Indian Ethos and Modern Management, New Royal Book Co., Lucknow.
- 7. M. Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethics and Human Values, Eastern Economy Edition, Prentice Hall of India Ltd.
- 8. M. K. Gandhi, "The Story of my Experiments with Truth", Discovery Publisher

MOOC / NPTEL/ YouTube Links: -

- Swayam Course on "Understanding Human Being Nature and Existence Comprehensively" by Dr. Kumar Sambhav, Director, UP Institute of Design (UPID), Noida. <u>https://onlinecourses.swayam2.ac.in/aic22_ge23/preview</u>
- NPTEL Course on "Exploring Human Values: Visions of Happiness and Perfect Society" by Prof. A. K. Sharma, Department of Humanities and Social Sciences, IIT Kanpur. <u>https://nptel.ac.in/courses/109104068</u>

E-Resources:

- 1. https://fdp-si.aicte-india.org/download.php#1/
- 2. https://madhyasth-darshan.info/postulations/knowledge/knowledge-of-humane-conduct/
- 3. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)					
CEP241AUR: Community Engagement activity / Field Project					
Teaching Scheme	Credit	Examina	ation Scheme		
Theory: NA		Term Work:	25 Marks		
Practical: 04 Hours/Week	2	Oral:	25 Marks		
Prerequisite Courses, if any:					
Students should have prior knowledge	e of				
1. Basic understanding of social and e	thical responsibilities				
2. Teamwork and communication skil	ls acquired in prior co	ursework or group	activities		
3. Familiarity with problem-solving m	ethodologies and proj	ect planning			
4. Conversation in local language					
Companion Course :					
1. CEP is an experiential learnin	g approach that co	mbines education,	learning, community		
development, and meaningful com	munity service.				
2. Project involves students in commu	inity development and	service activities an	nd applies the experience		
to personal and academic developr	nent.				
3. The targeted contribution of coll	ege students to the y	village/local develo	opment will benefit the		
community.	C	6	1		
4. The college has an opportunity to help students become more socially conscious and responsible.					
while simultaneously becoming a socially conscious organization					
Course Objectives.	,				
1. Establish a mutually beneficial rela	ationship between the	college and the com	nmunity		
2. Opportunities to engage with the	r local community, fo	ostering empathy, t	eamwork, and problem		
solving skills while contributing po	ositively to their surrou	indings.			
3 An understanding of the challeng	es faced by the local	community and the	e role of engineering in		
addressing those challenges	ine focul	community and the	e tote of engineering in		
4 The shility to apply technical know	uladaa and skills to da	sign solutions or in	torvantions that grants a		
4. The ability to apply technical know	vieuge and skins to de	sign solutions of m	terventions that create a		
positive impact on the community.					
5. The skills to evaluate and critical actionable insights for sustainable	y analyze the outcom impact	es of their engager	nent activities, deriving		
Course Outcomes:					
After successful completion of the course CO1. Identify and Analyze local commu	, learner will be able to inity needs and chall): enges by engaging	with stakeholders and		
evaluating real-world problems.			, sumenoració una		
CO2: Design and Implement practical, cre	ative, and context-spe	cific solutions using	g engineering principles		
to address community issues.		to address community issues.			
CO3: Reflect and Evaluate the effectiveness of their interventions and articulate lessons learned through					

Course Contents
Implementation
• A group of 3 to 4 students or a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay/college premise.
• Each group is allotted to a faculty member of the department as a mentor.
• The group of students will be associated with a government official / village authorities /NGOs etc. concerned, allotted by the district administration, during the duration of the project.
• The Community Engagement Project should be different from the regular programmes of NSS/NCC/Green
Club/Hobby Clubs, Special Interests Groups etc
and will be countersigned by the concerned mentor/HoD.
• Project report shall be submitted by each student/group of students.
• An internal evaluation shall also be conducted by a committee constituted by the HoD. Evaluation to be done based on the active participation of the student and marks could be awarded by the mentor/HoD
• Students groups can conduct an awareness programme on Health and Hygiene or in Organic Farming or in
Fisheries or in advocating prohibition of liquor or about renewable energy, e-waste management or any other
Suggestive list of topics under Community Engagement Project
The below lists are not exhaustive and open for HoD's or mentors to add, delete or modify. It is expected
that the focus should be on specific local issues in their nearby areas. The students are expected to carry out
these projects with involvement, commitment, responsibility and accountability. The mentors of a
student/group of students shall
2. Career orientation of worth
2. Career orientation of youth
3. Water facilities and drinking water availability
4. Health and hygiene of the school going students, home makers and old personals
5. Health intervention and awareness programmes
6. Horticulture
7. Herbal and Nutrition
8. Traditional and Modern health care methods
9. Food habits
10. Air /Sound /Water pollution
11. Plantation and Soil protection
12. Renewable energy and Solar Systems
13. Yoga awareness and practice
14. Health care awareness programmes and their impact
15. Organic farming
16. Food adulteration
17. Incidence of Diabetes and other chronic diseases
18. Blood groups and blood levels
19. Chemicals in daily life
20. Music and dance
21. Women education and empowerment

Project Scope
• Conduct workshops or awareness drives on topics like digital literacy, environmental sustainability, mental
health, or career planning for local stakeholders.
• Develop a simple prototype or solution that addresses a real-world problem (e.g., a water-saving device,
simple mobile apps, or tools for community use).
• Organize clean-up drives, tree plantations, recycling campaigns, or energy conservation initiatives.
Promote health through awareness programs on hygiene, nutrition, and exercise.
• Teach basic computer or technical skills to students, staff, or the community
Proposal Submission
CEP Group should Submit a two-page project proposal, preferably prior to the term commencement
outlining the following:-
• Title of the project
Aim, Objective and expected outcome
• Plan of execution (timeline and activities).
Place of the CEP and involvement of any local authority, NGP
• Required resources (if any).
• Get approval from the designated faculty mentor.
Learning Resources
Text Books:
1. Waterman, A. Service-Learning: A Guide to Planning, Implementing, and Assessing Student Projects. Routledge, 1997.
2. Beckman, M., and Long, J. F. Community-Based Research: Teaching for Community Impact. Stylus Publishing, 2016.
3. Design Thinking for Social Innovation. IDEO Press, 2015.
4. Dostilio, L. D., et al. The Community Engagement Professional's Guidebook: A Companion to The
Community Engagement Professional in Higher Education. Stylus Publishing, 2017
MOOC / NPTEL/ YouTube Links: -
1. NPTEL course: Ecology and Society, <u>https://onlinecourses.nptel.ac.in/noc20_ns///preview</u>
Web Links: -
1. UNESCO: Education for Sustainable Development <u>https://www.unesco.org</u>
2. EPICS (Engineering Projects in Community Service) <u>https://engineering.purdue.edu/EPICS</u>
3. Ashoka: Innovators for the Public <u>https://www.ashoka.org</u>

4. Design for Change <u>https://www.dfcworld.com</u>

Savitribai Phule Pune University, Pune

Maharashtra, India

SE - Automation & Robotics Engineering

2024 Pattern

Semester IV Courses

With effect from Academic Year 2025-26

Secor	Savitrib	ai Phule Pune Un	liversity	Pattarn)	
PCC251AUR: Principles of Robotics					
Teach	Teaching Scheme Credit Examination Scheme				
Theory: 0	3 Hours/Week	2	CCE:	30 Marks	
Practical: N	IA	3	End-Semester:	70 Marks	
Prerequisite Con Materials & Industrial Ela Engineering Manufacturin Product Deva Course Objective 1. To introduce T 2. To introduce T 3. To introduce T 4. To impart kno 5. To discuss fut Course Outcom After successful CO1. UNDERST CO2. SELECT on CO3. MODEL ro CO4. UNDERST CO5. ANALYSE programming tecl	urses, if any: Machine Elements ectronics & Controls Physics ng Technology elopment Laboratory s: various types of Robots a various types of the end of the basic mathematical movies the basic mathematical movies the basic mathematical movies the basic mathematical movies completion of the course AND basic concepts of ro- r DESIGN robot end effe botic arm for forward/in- AND fundamentals of ro- c robot program for troub hniques.	and the functional ele- effectors nodeling of a robot ot Programming and nd its applications , learner will be able obotics & SELECT ap ctors as per application verse kinematics bot programming and oleshooting and optim	ments of Robotics robotic Applications to: opropriate configuratio on d WRITE robot progra num operations using a	on for application.	
	<u> </u>	course Contents			
Unit I	Introducti	on to Industrial Rob	ootics	(08 Hours)	
Fundamentals of applications of ro Robot Anatomy: Robot Degrees of Robot Specification and inspection, R	Robotics: Definitions of bots, Asimov's laws of r Classification, Compone Freedom, Robot Joints a ons: Work envelope, pay ns: Material transfer and obot Economics.	of Industrial Robot, obotics, Robotic Wor nts – Introduction to and symbols, Robot C load capacity, Resolu machine loading/unlo	tunctions, advantages k Cell drives, sensors, Contro Coordinates, Robot Res ation, accuracy, repeat bading, processing ope	s, disadvantages, ollers ference Frames ability erations assembly	
Real World Assi 1. Demonstratio 2. Choose right	gnment: n of various robotic conf robot for manufacturing/	igurations using indu non-manufacturing aj	strial robot oplications enlisted as	exemplars.	
Fromplane / Dre	atical Applications:	•			
Exemplars / Pra	acucal Applications:				

1	Assembly	: Assembly of components with high precision, reducing production b	ottlenecks and
	ensuring (consistent product quality in electronics, automotive, and consumer goods i	nanufacturing.
2.	warehous	es and distribution centers.	nd accuracy in
3.	Welding:	Industrial robots perform various welding processes viz. arc, spot, and	laser welding,
	ensuring o	consistent weld quality and improving worker safety by handling hazardous	s tasks
4.]	Painting	and Coating: Robotic arms apply paints and coatings uniformly, reduc	ing waste and
	ensuring o	consistent finishes, especially in automotive and appliance manufacturing.	
5.	Machine	loading and unloading into machines like CNCs, increasing productivity	y and allowing
	human wo	orkers to focus on more complex tasks	
U	nit II	End Effectors	(08 Hours)
	oduction,	Type of End Effectors	C :
Grip	ppers, Typ	selection and Design Considerations for Grinners:	Grippers with
Dest	ion of M	echanical Two Fingered and Three Fingered Grippers: Internal Grippers	and External
Grin	pers;	containear 100 1 mgerea and 1000 1 mgerea Orippens, merinar Orippens	
Adv	ance Grip	opers- Adaptive grippers, Soft Robotics Grippers, Tactile Sensor Grippers;	
Vari	ious proce	ess tools as end effectors; Robot end effectors interface, Active and passive	compliance,
Rea	l World A	Assignment:	
1. 1	Design er	d effector for handling cylindrical/prismatic objects.	
$\begin{vmatrix} 2. \\ 2 \end{vmatrix}$	Design en	d effector for handling spherical objects.	
3. 0	Compare	grippers designed for handling cylindrical/prismatic and spherical objects.	
Exe	mplars /	Practical Applications:	
1. 0	1 Mech	nical (parallel/claws): Two or more rigid fingers that grasp objects—fast si	mple and ideal
	for uni	form parts, though less suited for fragile items	inpie, una racar
1.	.2. Vacuu	m/Suction cups: Use suction to lift flat/smooth items-great for packag	ing, glass, and
	electro	nics, but less effective on porous surfaces	
1.	.3. Soft/a	daptive grippers: Made from flexible materials or air-actuated fingers the	hat conform to
1	4 Magne	or deficate shapes (like food items of electronics)	s using atomic
	forces		s using utonic
2. T	ools tha	t physically modify objects: welding torches (MIG/TIG/spot), p	aint sprayers,
cı	utting/dril	ling/sanding tools, adhesive dispensers, etc.	
U	nit III	Mathematical Modeling of a robot	(08 Hours)
Ge	neral Mat	hematical Preliminaries on Vectors & Matrices, Link Equations and relation	ships, Direct
Kir	nematics,	Co-ordinate and vector transformation using matrices, Rotation ma	trix, Inverse
Ira	insformat	ions, Composite Rotation matrix, Homogenous Transformations, Robotic	Manipulator
J01 Tra	iii CO-01 insformat	ion in Robotic Manipulation	rs, Jacobian
Rea	World	Assignment:	
1.	Use of co	mputer facilities for direct and inverse kinematics of simple robot configuration	ation
L			

2. Demonstr	ration of simple robotic system using available computational facilities	
Exemplars /	Practical Applications:	
1. Forward an	nd inverse kinematics let engineers derive the position/orientation of the end-	-effector from
joint angle	es (and vice versa), enabling precise tasks like pick-and-place, assembly,	welding, and
medical ro	botics	
2. Trajectory	and path planning optimization computes efficient, safe joint-space paths	that minimize
forces or a	void obstacles	
Unit IV	Fundamentals of Robot Programming and Applications	(08 Hours)
Introduction	to Robotic Programming, On-line and off-line programming, programming	examples.
Various Teac	hing Methods, Survey of Robot Level Programming Languages	
Path planning	g and Interpolation: A Robot Program as a Path in Space, Motion Interpolat	tion, various
Textual Rob	ot Languages, Techniques for generating smooth robot motion path	hs between
programmed	points. Typical Programming Examples such as Palletizing, Loading a Mac	hine, etc.
Sensor Integr	ation: Tactile, position, velocity, and force sensors for robot interaction and	feedback.
Real World	Assignment:	
1. Program	ning examples for common industrial applications (e.g., welding, paint	ting, material
handling	assembly)	
2. One prog	ram using lead through programing for pick and place applications consid	ering suitable
sensor in	nuts	
Exemplars /	Practical Applications:	
1. Lead thro	ugh programing for applications like welding, brazing, etc.	
2. Robot pat	h planning and programming for pick and place, etc. operations.	
Unit V	Advanced Robot Programming Techniques	(08 Hours)
Safety Progra	mming: Functional Safety in Robotic Application, Emergency stop proceed	lures, safety
interlocks, ro	bot programming considerations for safe operation.	
Troubleshoot	ing and Maintenance: Identifying and resolving common robot program	ning errors,
basic robot m	aintenance procedures.	e ,
Future Trend	k in Industrial Robotics: Advanced programming techniques, collabor	ative robots
(cobots) Hur	nanoid Robots and the integration of artificial intelligence (AI)	
Real World	Assignment:	1
I. Simula	tion and Offline Programming: Utilizing robot simulation software to cre	eate, test, and
2. debug	tobot programs.	
Exemplars /	Practical Applications:	
1. Ethical	considerations in ensuring robot safety.	
2. ISO 10	218 - Robots for Industrial Environments - Safety Requirements	
Learning Re	esources	
Text Books:		
1. Groover	M.P. Weiss, M. Nagel, R.N. & Odrev, N.G. Ashish Dutta Industr	ial Robotics
Technol	bogy, Programming & Applications, Tata McGraw Hill Education Pvt. Ltd. 1	New Delhi
2. S. R. De	b, Robotics Technology and Flexible Automation, Tata McGraw Hill.	
3. Robot P	rogramming: Robot Languages and Robot Communication by Richard D	. Wright and

Matthew P. McLaughlin
Reference Books:
1. S B Niku, Introduction to Robotics, Analysis, Control, Applications, 2nd Edition, Wiley
Publication, 2015.
2. Mikell P. Groover, Automation, Production Systems & Computer Integrated Manufacturing, PHI
Learning Pvt. Ltd., New Delhi, ISBN:987-81-203-3418-2, 2012
3. John Craig, Introduction to Robotics, Mechanics and Control, 3rd Edition, Pearson Education,
2009
4. R K Mittal & I. J. Nagrath, Robotics and Control, McGraw Hill Publication, 2015. 5. Mike Wilson,
Implementation of Robotic Systems, ISBN: 978-0-124-04733-4
5. Robotics, Vision & Control: Fundamentals & Advanced Applications by Farid Kendoul
6. Robot Programming: A Guide to Using RUIP with ABB Robots by Rick Young
MOOC / NPTEL/YouTube Links: -
1. https://onlinecourses.nptel.ac.in/noc20 de11/preview

Savitribai Phule Pune University Second Vear of Automation & Robotics Engineering (2024 Pattern)				
PCC252AUR: Kinematics of Machines				
Teaching Scheme	Credit Examination Scheme			
Theory: 03 Hours/Week		CCE:	30 Marks	
Practical: NA	3	End-Semester:	70 Marks	
 Prerequisite Courses, if any: Engineering Mathematics - I Engineering Physics Engineering Mechanics Product Development Laborato Course Objectives: To make the students conversant with industrial applications. To develop the competency to ana analytical and graphical approach To develop the skill to propose and technique. To develop the competency to unders applications. To develop the competency to design Course Outcomes: After successful completion of the course, CO1. APPLY kinematic analysis to sim CO2. ANALYZE velocity and acceleratic CO3. SYNTHESIZE a four bar mechanic CO4. APPLY fundamentals of gear theorem is a provide the composed of the course of the co	and II bry h kinematic analysis of a lyze the velocity and synthesize the mech synthesize the mech tand & apply the print a cam profile for varior learner will be able to ple mechanisms ion in mechanisms by ism with analytical and bry as a prerequisite for en follower motion. Course Contents	of mechanisms applied d acceleration in med anisms using graphical ciples of gear theory to ous follower motions. : vector and graphical methods or gear design	to real life and chanisms using and analytical design various	
Unit I Funda	mentals of Mechanis	m	(08 Hours)	
Kinematic link, Types of links, Kinematic pairs, Kinematic chain, Types of joint Mechanism, Inversion, Grashoff's law, and its Inversions, Double slider crank Mechanisms with Higher pairs, Equiva Turning Pairs, Spring in Place of Turni Real World Assignment: Identify mecha closure, Water Flush tank, etc. Investigate	ic pair, Types of con s, Mechanism, Mach Four-Bar Chain and it mechanism and its lent Linkages and it ng Pairs, Cam Pair in misms in the followin e if current mechanism	strained motions, Type ine, Degree of freedo ts Inversions, Slider cra inversions ts Cases - Sliding Pa Place of Turning Pairs g domestic products viz n is replaced by other on	es of Kinematic m, Mobility of ank Mechanism irs in Place of z. Bicycle, Door ne.	
Exemplars / Practical Applications:				
1. Automotive: Suspension, steering, th	rottle controls, gear sl	hifting, braking systems	6	

.

2. Manufacturing: Presses, robotic arms, packaging machinery					
3. Aerospace: Actuation of flaps, landing gear, engine controls					
4. Household appliances: Washing machines, refrigerators, cam-driven valve					
Unit II Mechanisms in Automation Systems (08 Hour					
Automation: Introduction, Types of Automation – Hard and Soft Automation					
Rotary Power Transmission: Gears - Classification, terminology, direction, and speed ratios. Belts &					
Pulleys: Open and cross belt drives, Chains & Sprockets & their applications in Automation Systems					
Gear trains					
Linear Power Transmission: Screw, Rack-and-Pinion & Linear Guides					
Cam-Follower Mechanisms: Introduction, Classification of Followers and Cams, Terminology of					
Cam Displacement diagram for the Motion of follower as Uniform velocity, Simple Harmoni					
Motion (SHM)					
Indexing Mechanisms: Geneva Indexing Mechanism, Construction, Working & Application					
Clutches, Brakes: Classification, Construction, Working & applications					
Introduction to Harmonic drives and cycloidal reducers					
Real World Assignment: Identify mechanisms for power transmission in domestic products viz. foo					
processor, electric razor, etc. Investigate if current mechanism is replaced by other one.					
 Robotics: Harmonic and cycloidal gear reducers for backlash-free precision Elevators: Pulleys and counterweights enable smooth motion and balance Printing and shaping machines: Quick return and indexing used within shaper machines Pantographs: Scale drawings up/down Scotch voke: Valve actuators in oil & gas pipelines 					
Unit III Kinematic Analysis of Mechanisms: Analytical Method (06 Hour					
Analytical methods for displacement, velocity and acceleration analysis of slider crank Mechanism					
Velocity and acceleration analysis of Four-Bar and Slider crank mechanisms using Vector an					
Complex Algebra Methods. Computer-aided Kinematic Analysis of Mechanism like Slider crank an					
Four-Bar mechanism, Analysis of Single and Double Hook's joint					
Real World Assignment:					
1. Computer programming (using software/programming languages like C, Python, Scilab, Matlab					
2. Computer programming (using software/programming languages like C. Python, Scilab, Matlab					
etc.) for Kinematic Analysis of Hooke's joint Mechanism using Analytical Method					
Exemplars / Practical Applications:					
1. High-Precision & Positioning Systems - Used in servo applications, robotics, positioning tables,					
and printing press drives that need accurate speed synchronization and positioning.					
2. Trajectory planning: Kinematic modelling predicts the end-effector's position, enabling robots					
to execute precise pick-and-place, welding, or assembly tasks. 3. Inverse kinematics tells the robot joint angles needed to reach a target position—essential for					
multi-axis arms and humanoid robots.					
4. Linkage design (e.g., windshield wipers, door mechanisms) depends on kinematics to cover the right motion range without collision.					

.

5. Kinematic modelling enables CNC machines and milling centers to convert programmed tool					
paths into joint movements, ensuring accuracy and collision-free operation.					
synchronization and correct motion range					
Unit IV Kinematic Analysis of Mechanisms: Graphical Method (08 Hours)					
Displacement, velocity and acceleration analysis mechanisms by Relative Velocity Method					
(Mechanisms up to 6 Links), Instantaneous Centre of Velocity, Kennedy's Theorem, Angular					
Velocity ratio Theorem, Analysis of mechanism by ICR method (Mechanisms up to 6 Links),					
Coriolis component of Acceleration (Theoretical treatment only)					
Real World Assignment: Kinematic analysis of 4 bar mechanism, slider crank mechanism, etc. using					
graphical methods.					
Exemplars / Practical Applications: Same as Unit III					
Unit VSynthesis of Mechanisms(08 Hours)					
Steps in Synthesis: Type synthesis, Number Synthesis, Dimensional synthesis, Tasks of Kinematic					
synthesis - Path, function and motion generation (Body guidance), Precision Positions, Chebychev					
spacing, Mechanical and structural errors					
and Single Slider Crank Mechanisms					
Analytical Synthesis: Three position synthesis of Four-Bar mechanism using Freudenstein's					
Real World Assignment:					
1. To synthesize the Four-Bar and Slider Crank Mechanism (Geogebra, SAM, any 2D/3D Modelling Software)					
2. To do computer programming (using software/programming languages like C. Python, Scilab.					
Matlab etc.) for the Synthesis of Mechanism using Chebychevs spacing, Freudensteins equation					
and function generation					
Exemplars / Practical Applications:					
1. Robotics and Automation: Designing robotic arms and manipulators that require precise motion					
 2 Robotics and Automation: Implementing parallel and serial linkages for tasks like pick-and-place 					
operations and welding.					
3. Automotive Engineering: Developing suspension systems (e.g., double wishbone, four-bar					
linkages) to enhance ride comfort and handling and steering mechanisms and gear shifters that rely					
on linkages for smooth operation.					
4. Medical Devices: Engineering prosthetic limbs and rehabilitation equipment that mimic natural					
human motion.					
5. Medical Devices: Designing surgical tools with precise movement capabilities.					
1 S. S. Dotton "Theory of Machines" Third Edition McCrowy Hill Education (India) But					
Ltd., New Delhi.					
2. Bevan T, "Theory of Machines", Third Edition, Longman Publication					
3. G. Ambekar, "Mechanism and Machine Theory", PHI					
4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth					

Edition, International Student Edition, Oxford Electronics and AC Drives", Pearson
Education
Reference Books:
1. Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw
Hill Publication
2. M.P. Groover, "Automation, production systems and computer-integrated
manufacturing", Prentice-Hall of India Pvt. Ltd, New Delhi
3. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York
4. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata
McGraw Hill Publication
5. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.
6. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication
7. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill
Education (India) P Ltd. New Delhi
8. Sadhu Singh, "Theory of Machines", Pearson
9. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons
10. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI
MOOC / NPTEL/YouTube Links: -
1. https://nptel.ac.in/courses/112104121/ (NPTEL1, Kinematics of Machines, Prof. Ashok K Mallik,
IIT Kanpur)
2. https://nptel.ac.in/courses/112/106/112106270/ (NPTEL2, Theory of Mechanism, Prof. Sujatha
Srinivasan, IIT Madras)
3. https://nptel.ac.in/courses/112/105/112105268/ (NPTEL3, Kinematics of Mechanisms and
Machines, Prof. Anirvan Das Gupta, IIT Kharagpur)
4 https://nptel.ac.in/courses/112/105/112105236/ (NPTEL4 Mechanism and Robot Kinematics
Prof Anirvan Das Gunta IIT Kharagnur)
5 http://www.cdeen.jith.ac.jn/webnage_data/nntel/Mechanical/Robotics
5. <u>http://www.cdccp.nto.ac.nl/wcopage_data/nptc//wcchanica//kobolics</u>
Course_Home_reculturing (NFTELS, Infroduction to Kobolics and Automation, III
Bombay)

Savitribai Phule Pune University Second Veer of Automation & Robatics Engineering (2024 Pattern)				
PCC253AUR: Electric Drives for Automation Systems				
ſ	Teaching Scheme Credit Examination Scheme			
Theory:	03 Hours/Week	3	CCE:	30 Marks
Practical:	NA	3	End-Semester:	70 Marks
Prerequis	site Courses, if any:			
1. Enginee	ering Physics			
2. Basic E	lectrical Engineering			
3. Basic E	lectronics Engineering			
4. Enginee	ering Mathematics – I, II			
Course O	bjectives:			
1. Define	the fundamental concepts, con	nstruction, and working	ng principles of DC mo	tors, induction
motors,	and synchronous machines.			
2. Explain	the performance characteristic	cs, losses, and efficie	ncy of different electric	drives used in
automat	tion			
3. Illustrat	e different speed control and	l braking techniques	for DC and AC motor	s in industrial
applicat	tions.			
4. Compar	re and evaluate different types	of motor drives based	d on their operating prir	iciples, control
techniq	ues, and applications.	······································		
5. Analyze	e motor-load dynamics and cla	assity different types of		systems.
Course O	utcomes:			
After success	sful completion of the course,	learner will be able to):	
CO1. Expla	in the construction, classific	ations, and operating	; principles of DC mo	tors, induction
motor	s, and synchronous machines.	(T)	1 0 1 1	
CO2. Expla	in the significance of back EN	AF, torque equations,	and power flow in elect	ric drives.
CO3. Illusti	rate speed control methods	for DC and AC mo	tors using converters,	choppers, and
CO4 Evolu	ers.	o drives under vorious	loading and broking of	nditions
CO4. Evalu	rentiste between open loop ar	d closed loop control	strategies for electric d	rives and their
inductrial amplications				
Course Contents				
Unit I		DC Motors		(08 Hours)
	of working Constructional	lateila Tymes of DC	motora gignificance of	Check E M E
torque equ	or working, Constructional C	DC series and shunt	significance of back I	EME torque
equation (Characteristics and Selection	of DC Motors working	o at no-load and on-load	d. Starting of
DC Motor	rs. Speed Control methods (Descriptive treatment	t), reversal of rotation	regenerative
braking. L	osses, power flow diagram an	d efficiency.	,	

Permanent Magnet DC (PMDC) motors, applications in robotics.

.

Real World automotive a	Assignment: Investigate and write specifications of DC motors und domestic applications. Study type, construction, working of DC motor	sed in various r.		
Exemplars	Practical Applications:			
1 Automo	tive Systems: DC motors are widely used in vehicles for functions	such as nower		
window	windshield winers seat adjustments and electric power steering el	lectric vehicles		
(EVa) at	d hybrid alastric vahialas (HEVa)	leethe venicies		
2. Industria	I Machinery: DC motors drive conveyor belts, hoists, cranes and machinery	ine tools. Their		
ability to	provide precise speed and torque control makes them suitable for these	applications		
3. Consum	er Electronics: Small DC motors power devices such as electric toothbr	ushes, shavers,		
and cool	ing fans in laptops. Their compact size and low voltage operation make	them ideal for		
portable	electronics			
4. Medical	Equipment: DC motors are used in medical devices like ventilators, infus	ion pumps, and		
surgical	tools, where precise and reliable motion control is critical			
5. Renewal	ble Energy Systems: They are employed in solar tracking systems to adi	ust the position		
of solar	panels for optimal sunlight exposure and in wind turbine pitch control me	chanisms		
Unit II	Induction Motors	(06 Hours)		
Three-Phase	Induction Motors: Types of induction motor, flux and mmf waves	development of		
circuit mode	nower across air gap torque and power output starting methods	speed control		
applications.	induction generator, induction machine dynamics, high efficiency induction	n motors.		
- FF ,				
Single-Phase	Induction Motors: Types, construction, working principle of shaded-pole ty	pes. applications		
Real World	Assignment: Investigate and write specifications of Induction motors use	d in various		
domestic app	lications. Study type, construction, working of induction motor.			
Exemplars	Practical Applications:			
1. Industria	l Machinery - Three-phase squirrel-cage motors power heavy-duty	machines like		
conveyo	r belts crushers mixers presses lathes and milling machines due to th	eir self-starting		
conveyo	y reliability and east officiancy	en sen-starting		
2 Eana hl	y, remaining, and cost-efficiency			
2. Fans, bi	owers, and pumps in HVAC and industrial ventilation systems rely on u	lese motors for		
continuo	us operation			
3. Pumps &	c Compressors - Widely used in water pumps, submersible pumps, and an	r compressors		
4. Household Appliances - Single-phase induction motors are found in refrigerators, washing				
machine	s, fans, garbage disposals, and small power tools.			
5. Elevator	s & Hoists - Slip-ring (wound-rotor) induction motors provide variable-sp	eed control and		
high tore	ue at startup—ideal for cranes, elevators, and mine hoists			
6. Oil. Gas	& Refining - Robust three-phase induction motors drive pumps, co	mpressors, and		
conveyo	rs in environments that demand durability and resistance to harsh condition	ons		
Unit III	Synchronous Machines and Special purpose motors	(08 Hours)		
Construction,	types, armature reaction, determination of synchronous reactance, phasor	diagram, power		
angle charact	eristics, synchronous motor operation, PM synchronous machines.			
Special purp	ose motors: Construction, working principle, characteristic and applica	tions of stepper		
		11		
motors, A.C a	ind D.C servomotors			

Real World Assignment: Investigate and write specifications of synchronous motors used in various domestic applications. Study construction, working of synchronous motor. Also, comment on various industrial applications.

Exemplars / Practical Applications:

- 1. High-Precision & Positioning Systems Used in servo applications, robotics, positioning tables, and printing press drives that need accurate speed synchronization and positioning.
- 2. Clocks, Turntables & Lab Instruments In devices where unwavering speed precision means the difference between good and great performance.
- 3. Electric Power Generation: Operating as synchronous generators, they convert mechanical energy from turbines into electricity in thermal, hydro, and nuclear power plants.
- 4. Constant-Speed Drives They run at precise, synchronous speed (locked to supply frequency)

Unit IVFundamentals of Electric Drives(08 Hours)Definition, Advantages of electrical drives, Components of Electric drive system, Selection Factors,
speed control and drive classificationsImage: Component of the system of the syste

Motor Load Dynamics, Speed Torque conventions and multi quadrant operation, Equivalent values of drive parameters. Load Torque Components, Nature and classification of Load Torques, Constant Torque and Constant Power operation of a Drive, Steady state stability.

3Ph Induction motor drives – Variable Frequency Drives (VFD)

Real World Assignment: Understand requirements of Electric drives and components of drives with functions in Automation & Robotics.

Exemplars / Practical Applications:

- 1. CNC machinery & cutting tools: Use servo drives for high precision in positioning and speed.
- 2. Robots & pick-and-place: Stepper and servo drives enable accurate, repeatable motion in manufacturing.
- 3. Conveyors & production lines: AC drives with VFDs regulate speed and torque to optimize throughput.
- 4. Hoisting drives: Heavy-duty induction or synchronous motors with VFD provide smooth start/stop, accurate positioning, and energy efficiency.

Unit V

Application of Electric Drives

(08 Hours)

DC Motor Drives: Single-phase and three-phase fully controlled converter drives and performance of converter fed separately excited DC Motor for speed control operations.

BLDC drive: Construction (Block diagram) and working for motoring and regenerative braking, Speed and torque Characteristics.

Induction Motor Drives: Regenerative braking, dynamic braking, Plugging, braking and speed control, voltage source inverter (VSI) control, Steady State Analysis.

Synchronous Motor drives: PMSM Drive: Construction (Block diagram) and working for motoring and regenerative braking, Speed and torque Characteristics.

Real World Assignment: Write difference between electric drives used in AC & DC systems. Discuss one application of each AC/DC drives with suitable domestic/industrial application.

Exemplars / Practical Applications:

1. Robotics and Automation - Small-to-midsize robots use DC motor drives (especially shuntwound or separately excited types) for fine positional control and repeatability.

2. Drones & Model Aircraft - Their lightweight and high power-to-weight ratio make them ideal
for UAV propellers—providing reliable, fast-response thrust for flight manoeuvres
3. Industrial Automation - Used in servo systems, cobots, and conveyor systems, BLDC drives
enable accurate positioning, fast acceleration, and regenerative braking, all while maintaining
compactness and reliability.
Learning Resources
Text Books:
1. V. K. Mehta and Rohit Mehta, Principles of Electrical Machines, S Chand Publication
2. Ashfaq Husain, Electrical Machines, Dhanpat Rai and Co.
3. B. L Theraja – Electrical Technology, Vol II, S. Chand publication.
4. G. K. Dubey, "Fundamentals of Electrical Drives", Second edition (sixth reprint), Narosa
Publishing house,2001.
5. B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education
6. N. K. De, P. K. Sen, "Electric Drives", Prentice Hall of India Eastern Economy Edition
Reference Books:
1. A.E. Fitzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machines", TataMcGraw Hill
Publication Ltd., Fifth Edition.
2. A.S. Langsdorf, "Theory and performance of DC machines", Tata McGraw Hill.
3. Smarajit Ghosh, "Electrical Machines", Pearson Education, New Delhi
4. P. C. Sen, "Principles of Electric Machines and Power Electronics ", John Wiley and Sons Publication, second edition 1997.
5. R. Krishnan, "Electric Motor Drives – Modeling Analysis and Control", PHI India
6. B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education
7. Austin Huges, "Electrical motor and drives: Fundamental, types and applications", Heinemann Newnes, London
8. Frank D. Petruzella – Programmable Logic Controllers (McGraw-Hill)
9. R K Raiput – Industrial Electronics and Control (S. Chand)
10 James A. Daha & Claure I. Soutonia - Industrial Electronics (Decrean)
10. James A. Reng & Glenn J. Sartori – Industrial Electronics (Pearson)
MOOC / NPTEL/YouTube Links: -
1. <u>https://archive.nptel.ac.in/courses/108/104/108104140/</u>
2. https://archive.nptel.ac.in/courses/108/108/108108077/
3. <u>https://onlinecourses.nptel.ac.in/noc19_ee65/preview</u>
4. <u>https://onlinecourses.swayam2.ac.in/nou24_ee02/preview</u>

Savitribai Phule Pune University					
Second Year of Automation & Robotics Engineering (2024 Pattern)					
PCC254AUR: R	PCC254AUR: Robots & Drive System Laboratory				
Teaching Scheme	Credit	Credit Examination Scheme			
Practical: 02 Hours/Week	1	Oral:	25 Marks		
 Prerequisite Courses, if any: Engineering Mathematics Industrial Electronics & Controls Manufacturing Technology Workshop Practice Engineering Mechanics Product Development Laboratory Course Objectives: 1. To understand ethical operations of 2. Differentiate types of robots and rob Grippers 3. Apply robot kinematics principals for 4. Apply basic principles of AI in so knowledge representation and learning societal implications. 5. Model forward and inverse kinematic Course Outcomes: On successful completion of the course, CO1. Study the fundamental concepts at of robot applications. CO2. Identify the key industry standard and performance. CO3. MODEL robotic arm for forward/ CO4. UNDERSTAND fundamentals of CO4. CO5. ANALYSE robot program for robotic programming techniques. 	robotics pot grippers and com or understanding ma plutions that require ing by understanding ics of robot manipul learner will be able nd terminologies rel s and regulatory fran inverse kinematics robot programming for troubleshooting a	npare & classify nipulators tracki e problem solvi g AI, its current ator. to: ated to standards neworks govern g and WRITE rob and optimum ope	types of Sensors, drives & ng ng, inference, perception, scope and limitations, and s and ethics in the context ing robot design, safety, pot programs erations using advanced		
Guidelin	es for Laboratory (Conduction			
 The student shall complete the following list must be perform Term Work of the student is eval. Drawing Aids, Assignments using Virtual Laboratory and Detailed Ind Use simulation tools such as a minimplementation. Encourage students to work on mini Promote teamwork and interdiscipling Focus on debugging techniques and There should be continuous assessmentation. 	wing activity as a 7 ned. uated based on the c Software & Prog ustrial Visit Report. MATLAB, Python -projects related to 1 nary collaboration in best practices in pro- ent and timely subn	Ferm Work of T completion of Pra ramming Langu , ROS, and C real-world applic n labs. ogramming robot nission of journa	otal 8 experiments from actical, Assignments using lages, Assignments using Gazebo before hardware eations. tic systems. 1.		

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

Practical 1: 02 Hrs
Introduction to Standards and Ethics in Robotics, Introduction to the field of robotics and its ethical
dimensions, Overview of relevant industry standards and regulatory frameworks
Exemplars / Practical Applications:
The ISO (International Organization for Standardization) standard for robot safety is ISO 10218 -
Robots for Industrial Environments - Safety Requirements
Practical 2: 02 Hrs
Demonstration of various robotic configurations using industrial robot.
Exemplars / Practical Applications:1. Choose right robot for manufacturing or non-manufacturing applications based on robot configurations.
Practical 3: 02 Hrs
Design and selection of Gripper / End effector.
Exemplars / Practical Applications:
 Material Handling & Pick-and-Place Grippers (electric, pneumatic, mechanical): pick and move varied objects-boxes, parts, delicate items.
 1.2 Vacuum suction cups: ideal for flat, non-porous surfaces like glass or metal sheets. 1.3 Magnetic grippers: perfect for ferrous materials; reliable in power loss since permanent magnets stay active 1.4 Inspection & Sensing - Cameras and sensors: 2D/3D vision systems, force/torque sensors, ultrasonic/infrared scanners used for quality control, alignment, collision detection 2. Packaging & Palletizing - Grippers combined with conveyors to load items into containers or onto pallets rapidly and accurately
 Inspection & Sensing: Cameras and sensors: 2D/3D vision systems, force/torque sensors, ultrasonic/infrared scanners used for quality control, alignment, collision detection Specialized Applications Agriculture: fruit harvesters with multi-part grippers designed for gentle handling, trimming, spraying, or bagging (e.g., grape-picking end effectors) Food processing: dexterous tools like chopstick-style grippers for delicate seafood handling Surgical & rehabilitation robotics: robotic arms for precise medical operations or therapeutic
 4.5 Surgical & Tenaonitation robotics, robotic arms for precise incurear operations of therapeutic exercises. 5. Machine Tending & Assembly 5.1 Load/unload CNC mills, presses, and other equipment—robot arms pick parts, post-process items, or conduct quality checks 5.2 For assembly, grippers or more specialized tools handle and insert components (e.g., PCB placement, screws)
Practical 4: 02 Hrs
Design and control of a pick-and-place robotic arm.
 Exemplars / Practical Applications: 1. Arduino + servos + Bluetooth remote – beginner-friendly, low-speed, educational 2. PLC-based control – industrial-grade robustness and deterministic operation 3. ROS + MoveIt + hardware interface – full-featured precision; supports vision-driven pick-and-place Practical 5: 02 Hrs
Identify and selection of Sensors for Robotics/Automation applications. Comparison of various sensors
based on Sensitivity, Accuracy, Precision (Repeatability), Linearity, Range (Span), Resolution, Response Time, Hysteresis, Drift and stability for given application.
`

Exemplars / Practical Applications:

- 1. Predictive & Prescriptive Maintenance: Robots equipped with vibration, temperature, ultrasonic, and acoustic sensors continuously monitor equipment health.
- 2. Quality Control & Assembly Inspection: Vision sensors (cameras, machine vision) inspect products for defects at high speed and precision. Force-torque sensors and tactile sensors help robots assemble delicate components without damage
- 3. Collaborative Robots (Cobots): Cobots use proximity, force/torque, and thermal sensors to safely work alongside humans in tasks like welding, packing, and visual inspection
- 4. Precision Farming: Drones and ground robots employ multispectral cameras, gas, humidity, and soil sensors to monitor crop health, detect pests, and optimize irrigation
- 5. Environmental Analysis: Robots equipped with gas sensors, toxic monitors, temperature/humidity sensors, and radar are used for air-quality mapping, disaster assessment, and environmental surveillance

Practical 6:

ROS based Mobile Robot Simulation using Gazebo.

Exemplars / Practical Applications:

- 1. CottonSim: Simulates an autonomous cotton-picking robot (based on Clearpath Husky) using ROS 1 + Gazebo.
- 2. HuNavSim: A ROS 2 toolkit that integrates Gazebo to simulate human movement patterns. Its goal is to benchmark mobile robots for socially-aware navigation—crucial for service robots in public spaces
- 3. MiniBot 3D: A ROS+Gazebo setup that supports SLAM, odometry, and localization across indoor/outdoor environments. Helps tune algorithms under realistic sensor-uncertainty scenarios
- 4. Simulink + Gazebo: MathWorks example shows simulating a warehouse robot that uses range sensors for path planning and collision avoidance—ideal for prototyping automated package delivery robots in logistic environments
- 5. Mobile Manipulator: Another demo integrates mobile base + arm in Gazebo/ROS, enabling pickand-place tasks in warehouse-like settings, all coordinated via ROS2 + MATLAB/Simulink
- 6. DeepSim: A toolkit coupling ROS + Gazebo to create reinforcement learning environments. Offers modular elements like collision detection, spawners, and domain randomization

Practical 7:

- Robot Programming Walk through programming (Manual lead through programming)
- Robot Programming using Teach Pendant (Powered) Lead through programming including Coordinate systems of Robot.

Practical 8:

VAL language commands motion control, hand control, program control, pick and place applications. RAPID Language and AML

Practical 9:

Programming using Robot simulation software

Practical 10:

Industrial Visit

Learning Resources

Text Books:

- 1. Groover, M.P. Weiss, M. Nagel, R.N. & Odrey, N.G., Ashish Dutta, Industrial Robotics, Technology, Programming & Applications, Tata McGraw Hill Education Pvt. Ltd. New Delhi
- 2. S. R. Deb, Robotics Technology and Flexible Automation, Tata McGraw Hill.

02 Hrs

02 Hrs

02 Hrs

02 Hrs

02 Hrs

- 3. Robot Programming: Robot Languages and Robot Communication by Richard D. Wright and Matthew P. McLaughlin
- 4. Staple Danny, "Learn Robotics Programming", Packt Publishing Limited, Feb 2021 Reference Books:
- 1. Industrial Robotics by Yoram Koren (5th Edition)
- 2. Robot Programming: Robot Languages and Robot Communication by Richard D. Wright and Matthew P. McLaughlin
- 3. Robotics, Vision & Control: Fundamentals & Advanced Applications by Farid Kendoul
- 4. Robot Programming: A Guide to Using RUIP with ABB Robots by Rick Young
- 5. Hughes Cameron, "Robot Programming", Pearson Publishers, 2016
- 6. J. Srinivas, "Robotics: Control and Programming", Narosa Publication, 2009
- 7. Lentin Joseph, "Learning Robotics Using Python", Second Edition Design, simulate, program, and prototype an autonomous mobile robot using ROS, OpenCV, PCL, and Python, Packt Publishing Paperback 1 January 2018
- 8. Kailashi Chandra Mahajan, Prashant Kumar Patnaik, Raghvendra Kumar, "Robotics for Engineers", Vikas Publishing House, 2016

MOOC / NPTEL/YouTube Links:

- 1. https://onlinecourses.nptel.ac.in/noc19 me74/preview
- 2. https://onlinecourses.nptel.ac.in/noc20_de11/preview

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)				
PCC255AUR: Kinematics of Machines Laboratory				
Teaching Scheme	Credit	Examina	ation Scheme	
Practical: 02 Hours/Week	1	Term Work:	25 Marks	
Practical: 02 Hours/Week 1 Term Work: 25 Marks Prerequisite Courses, if any: • Engineering Mathematics - I and II • • Engineering Mathematics - I and II • • • • Engineering Mathematics - I and II • • • • Engineering Mechanics • • • • • Product Development Laboratory •				
CO5. CONSTRUCT cam profile for	given follower motion.			
Guideli	nes for Laboratory Co	onduction		
 The student shall complete the following activity as a Term Work Total 10 experiments from the following list must be performed. Term Work of the student is evaluated based on the completion of Practical, Assignments using Drawing Aids, Assignments using Software & Programming Languages, Assignments using Virtual Laboratory and Detailed Industrial Visit Report. 				
Group 1: Practical 06 Hrs				
• Experiment # 4 is compulsory and Select any Two from Experiment # 1 to 3				
 Study gear nomenclature and Construct involute profile using rack as a cutter to understand various gear manufacturing processes. Speed and torque analysis to determine holding torque of epicyclic gear train. To study and verify cam jump phenomenon. To make a model of any mechanism by using waste material by the group of 4 to 6 students and to give a presentation using PPTs. 				
Exemplars / Practical Applications	Exemplars / Practical Applications:			
 Automotive: Suspension, steering Manufacturing: Presses, robotic a Aerospace: Actuation of flaps, land 	, throttle controls, gear rms, packaging machin nding gear, engine cont	shifting, braking sy nery rols	ystems	

4 Household appliances: Washing machines, refrigerators, cam-driven valve
4. Household apphances, washing machines, terrigerators, can-univervalve
Group 2: Assignments using Drawing Aids on half imperial drawing sheet (08 Hrs)
 Assignment#1 to 4 are compulsory and select any one from 5 & 6 1. Identify mechanisms in real life and Analyze for types and number of links, pairs, obtain degrees of freedom. Submit the sheet and working video of the mechanism. 2. To solve two problems on velocity and acceleration analysis using relative velocity and acceleration method. 2. To solve two problems on velocity and acceleration analysis using relative velocity and acceleration method.
 To solve two problems on velocity analysis using the fext method. To draw cam profile for any two problems with combination of various follower motion with radial and off-set cam. To draw conjugate profile for any general type of gear tooth. To study various types of gearboxes.
Exemplars / Practical Applications:
1. Robotics: Harmonic and cycloidal gear reducers for backlash-free precision
2. Elevators: Pulleys and counterweights enable smooth motion and balance
3. Printing and shaping machines: Quick return and indexing used within shaper machines
4. Pantographs: Scale drawings up/down
5. Scotch-yoke: Valve actuators in oil & gas pipelines
Group 3: Assignments using Software (08 Hrs)
• Any Three Assignments - Minimum one computer programming based and Minimum one based on use of software
• Assignment#1 to 4 are compulsory and Select any one from 5 & 6
 Do following assignments by using Software or by using Coding/Programming Languages: 1. To design a simple Planer Mechanism by using any software (Geogebra, SAM, Working Model, any 3D Modelling Software, etc.)
 To do computer programming (using software/programming languages like C, Python, Scilab, Matlab etc.) for Kinematic Analysis of Slider Crank Mechanism using Analytical Method To do computer programming (using software/programming languages like C, Python, Scilab, Matlab etc.) for Kinematic Analysis of Hooke's joint Mechanism using Analytical Method To generate a Cam Profile using any Modelling Software (MechAnalyser, any 3D Modelling Software)
 To synthesize the Four-Bar and Slider Crank Mechanism (Geogebra, SAM, any 2D/3D Modelling Software)
6. To do computer programming (using software/programming languages like C, Python, Scilab, Matlab etc.) for the Synthesis of Mechanism using Chebychevs spacing, Freudensteins equation and function generation
Exemplars / Practical Applications:
1. High-Precision & Positioning Systems - Used in servo applications, robotics, positioning tables,
and printing press drives that need accurate speed synchronization and positioning.
 Trajectory planning: Kinematic modelling predicts the end-effector's position, enabling robots to execute precise pick-and-place, welding, or assembly tasks. Inverse bin emotion table the model is needed to mach a terrest position.
5. Inverse kinematics tells the robot joint angles needed to reach a target position—essential for multi-axis arms and humanoid robots.
4. Linkage design (e.g., windshield wipers, door mechanisms) depends on kinematics to cover the right motion range without collision.
5. Kinematic modelling enables CNC machines and milling centers to convert programmed tool paths into joint movements, ensuring accuracy and collision-free operation.
6. Presses and linkages, like punching or stamping lines, use position analysis to ensure timing
<u> </u>

synchronization and correct motion range.

Group 4: Industrial Visit (Mandatory)

- Any Three Assignments Minimum one computer programming based and Minimum one based on use of software
- Assignment#1 to 4 are compulsory and Select any one from 5 & 6

A Compulsory industrial visit must be arranged to industries/ establishments consisting automation and mechanization during semester to provide awareness and understanding of the course.

The Industrial Visit must be preferably to

- Manufacturing industries with Assembly-line Automation
- Jigs- fixtures design/manufacturing
- Automation industries
- Automobile garages, etc.

Student must submit properly documented Detailed Industrial Visit Report in his/her own words.

Group 5: Assignments on content beyond syllabus

• Additional credits to be given to students

Following assignments can be attempted:

- 1. Forward and Inverse Kinematics of 2R/2P/PR Manipulators using Software (Geogebra, Robo Analyser, Vlab, etc.)
- 2. Kinematic Analysis of 6 DOF Industrial Robot using Software (Robo Analyzer, Vlab, etc.)

Learning Resources

Text Books:

- 1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.
- 2. Bevan T, "Theory of Machines", Third Edition, Longman Publication
- 3. G. Ambekar, "Mechanism and Machine Theory", PHI
- 4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford Electronics and AC Drives", Pearson Education

Reference Books:

- 1. Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication
- 2. M.P. Groover, "Automation, production systems and computer-integrated manufacturing", Prentice-Hall of India Pvt. Ltd, New Delhi
- 3. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York
- 4. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill Publication
- 5. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.
- 6. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication
- 7. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi
- 8. Sadhu Singh, "Theory of Machines", Pearson
- 9. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons

10. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI

MOOC / NPTEL/YouTube Links: -

- https://nptel.ac.in/courses/112104121/ (NPTEL1, Kinematics of Machines, Prof. Ashok K Mallik, IIT Kanpur)
- 2. https://nptel.ac.in/courses/112/106/112106270/ (NPTEL2, Theory of Mechanism, Prof. Sujatha

Srinivasan, IIT Madras)

- https://nptel.ac.in/courses/112/105/112105268/ (NPTEL3, Kinematics of Mechanisms and Machines, Prof. Anirvan Das Gupta, IIT Kharagpur)
- 4. https://nptel.ac.in/courses/112/105/112105236/ (NPTEL4, Mechanism and Robot Kinematics, Prof. Anirvan Das Gupta, IIT Kharagpur)
- 5. <u>http://www.cdeep.iitb.ac.in/webpage_data/nptel/Mechanical/Robotics</u>
- Course/Course_home_lect1.html (NPTEL5, Introduction to Robotics and Automation, IIT Bombay)

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)				
MDM271AUR: Artificial Intelligence & Machine Learning				
Teaching SchemeCreditExamination Scheme			ination Scheme	
Theory: 02 Hours/Week		CCE:	50 Marks	
Practical: NA	2	End-Semester	·: NA	
Prerequisite Courses, if any:	T 1 D 1			
• Linear Algebra, Probability, Statistics	s, Logical Reasoning			
 To ACQUAINT with fundamentals of artificial intelligence and machine learning. To LEARN feature extraction and selection techniques for processing data set. To UNDERSTAND basic algorithms used in classification and regression problems. To OUTLINE steps involved in development of machine learning model. To FAMILIARIZE with concepts of reinforced and deep learning. Course Outcomes: After successful completion of the course, learner will be able to: CO1. DEMONSTRATE fundamentals of artificial intelligence and machine learning. CO2. APPLY feature extraction and selection techniques. CO3. APPLY machine learning algorithms for classification and regression problems.				
CO5. APPLY concepts of reinforced and c	leep learning.			
	Course Contents			
Unit I Introduction to AIML and	Feature Extraction an	nd Selection	(06 Hours)	
Introduction to AI & ML, Need of AI in N	lechanical Engineering,	Approaches to A	I: Cybernetics and brain	
simulation, Symbolic, Sub-symbolic, Sta	tistical, Approaches to	ML: Supervised	learning, Unsupervised	
learning, Reinforcement learning. Introduc	ction to Data, Elements	of Dataset, Introd	duction to various types	
of data Feature extraction: Statistical Feat	ures, Principal Compon	ent Analysis, Feat	ture selection: Ranking,	
Decision tree - Entropy reduction and	information gain (Nu	merical 2-3 Feat	tures- Preference (IG),	
Exhaustive, best first, Greedy forward & b	ackward, Multi collinea	arity – Heatmap		
Real World Assignment 1. Machine Failure Prediction 2. Decision Tree-Based Fault Detection in CNC Machines				
 Practical Applications 1. AI in Industry: Fault Diagnosis in Turbines / Identifying Wear Patterns in Engines 2. Predictive Maintenance of Machinery 				
Unit II ML Algorithms: Classifica	ation & Regression		(06 Hours)	
 Supervised Learning: Linear Regression (Li Poly Regression, Logistic Regression, Naive Ensemble Techniques (Regression & Classif XGB Classifier. Unsupervised Learning: K-means Clustering Classification Algorithm & Regression Alg Learning (Formula). 	ne, Plane & Hyperplane) e Bayes Classifiers, k-N ication): Decision tree (ID g, Hierarchical Clustering, gorithms: Bias-Variance	Concept, Multi-Va N Classification, S 03-IG), Random For Dimension Reduct Trade off, Distanc	ariable Linear Regression, Support Vector Machines rest, Bagging & Boosting, ion-PCA we Parameters in Machine	

Real World Assignment		
1. Predicting Machine Wear & Tear Using Linear Regression		
 Classification of Defective vs. Non-Defective Components Using SVM 		
Practical Ap	plications	
1. Predictive Maintenance Using Regression & Classification		
2. Fault I	Detection in Rotating Equipment Using Clustering	
Unit III	Feature Engineering, Development of ML Model & Evaluation	(06 Hours)
Feature Engineering, Model Selection & Tuning: Feature engineering, Model selection, Model tuning,		
Model performance measures, Regularizing the Linear models, ML pipeline, Bootstrap sampling, Grid		
search CV, Randomized search CV, K fold cross-validation.		
Problem identification: classification, clustering, regression, ranking. Steps in ML modeling, Data		
Collection, Data pre-processing, Model Selection, Model training (Training, Testing, K-fold Cross		
Validation), Model evaluation (Accuracy, Precision, Recall, True Positive, False Positive, etc.), Hyper		
parameter Tuning: 1) Probability 2) Hypothesis 3) Confusion Matrix (Common dataset – Common problem		
statement), Influence of Type 1 & Type 2 error		
Real World Assignment		
1. Machine Condition Monitoring Using Feature Engineering		
2. Fault Detection Using Confusion Matrix Analysis		
Practical Ap	plications	
1. Predictive Maintenance of Industrial Machines		
2. Optimizing Engine Performance Using Regression Models		
TT •4 TT7		
Unit IV	Reinforced and Deep Learning	(06 Hours)
Vnit IV Neural Netwo	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function,	(06 Hours) Gradient Descent &
Unit IV Neural Netwo Gradient Aces	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, cent, Batch Normalization, Hyper Parameter Tuning	(06 Hours) Gradient Descent &
Unit IV Neural Netwo Gradient Aces Characteristic	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora	(06 Hours) Gradient Descent & tion Vs. Exploitation
Unit IV Neural Netwo Gradient Aces Characteristic Trade-off, Bell	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based;	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative
Vnit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA.	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative
Vnit IV Neural Netwo Gradient Acess Characteristic Trade-off, Bell Reinforced Lea Computer Vis	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning.	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward
Vnit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning.	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vnit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Les Computer Vis & Backward P Applications of Real World A	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, e cent, Batch Normalization, Hyper Parameter Tuning es of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World J 1. Comp	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment puter Vision-Based Defect Detection in Mechanical Parts	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Les Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfo	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning es of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment puter Vision-Based Defect Detection in Mechanical Parts procement Learning for Robotic Arm Optimization	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfor Practical Ap	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, cent, Batch Normalization, Hyper Parameter Tuning es of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment outer Vision-Based Defect Detection in Mechanical Parts procement Learning for Robotic Arm Optimization plications	(06 Hours) Gradient Descent & ation Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfo Practical Ap 1. AI in	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora aman Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment outer Vision-Based Defect Detection in Mechanical Parts procement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfor Practical Ap 1. AI in Asses	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning es of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Jo Assignment buter Vision-Based Defect Detection in Mechanical Parts prement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for sment & Security, etc.	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World J 1. Comp 2. Reinfo Practical Ap 1. AI in Asses 2. Comp	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning es of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment buter Vision-Based Defect Detection in Mechanical Parts procement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for sment & Security, etc. buter Vision: Object Detection	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Les Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfo Practical Ap 1. AI in Asses 2. Comp	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Ja Assignment nuter Vision-Based Defect Detection in Mechanical Parts procement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for sment & Security, etc. nuter Vision: Object Detection	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Unit IV Neural Netwo Gradient Aces Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfor Practical Ap 1. AI in Asses 2. Comp	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, or cent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Jo Assignment uter Vision-Based Defect Detection in Mechanical Parts precement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for sment & Security, etc. uter Vision: Object Detection Learning Resources	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Veural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfo Practical Ap 1. AI in Asses 2. Comp Text Books: 1. Deise: 2. B Josl	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, ecent, Batch Normalization, Hyper Parameter Tuning cs of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Je Assignment uter Vision-Based Defect Detection in Mechanical Parts orcement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for sment & Security, etc. uter Vision: Object Detection Learning Resources	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0
Vinit IV Neural Netwo Gradient Aceso Characteristic Trade-off, Bell Reinforced Lea Computer Vis & Backward P Applications of Real World A 1. Comp 2. Reinfo Practical Ap 1. AI in Asses 2. Comp Text Books: 1. Deise: 2. B Josl 3. Parag	Reinforced and Deep Learning ork: Introduction to Perceptron & NN, Activation Function & Loss Function, ecent, Batch Normalization, Hyper Parameter Tuning es of reinforced learning; Algorithms: Framework of RL, characteristics, Explora man Optimality Principle, Types of RL: Value Based, Policy Based, Model Based; arning; Models: Markov Decision Process, Q Learning, SARSA. sion: Introducing Image Dataset, Introduction to CNN, Convolution, Pooling & Pac ropagation, CNN architectures, Transfer Learning. of Reinforced, Computer Vision and Deep Learning in Mechanical Engineering (Jo Assignment uter Vision-Based Defect Detection in Mechanical Parts procement Learning for Robotic Arm Optimization plications Automobiles/ Agriculture/ Robotics/ Health science/ Computer Vision for sment & Security, etc. uter Vision: Object Detection Learning Resources	(06 Hours) Gradient Descent & tion Vs. Exploitation Positive vs Negative dding, CNN Forward obs), Industry 5.0 • Analysis, Quality sity Press, 2020. ent Systems", PHI

4. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003

Reference Books:

- 1. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.
- 2. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.
- 3. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.
- 4. Zsolt Nagy Artificial Intelligence and Machine Learning Fundamentals-Apress (2018)
- 5. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH

MOOC / NPTEL/ YouTube Links: -

- 1. http://nptel.ac.in/courses/111101003/
- 2. <u>https://nptel.ac.in/courses/106/106/106106202/</u>
- 3. https://nptel.ac.in/courses/112/103/112103280/
- 4. <u>https://www.analyticsvidhya.com/</u>
| Savitrik | ai Phule Pune Un | iversity | | |
|--|--------------------------------|--|----------------------------|--|
| Second Year of Automation & Robotics Engineering (2024 Pattern) | | | | |
| VSE281AUR: Product Development Laboratory | | | | |
| Teaching Scheme | Credit | Exami | nation Scheme | |
| Practical: 02 Hours/Week | 1 | Practical: | 50 Marks | |
| Prerequisite Courses, if any: | | | | |
| Engineering Graphics | | | | |
| Manufacturing Practice Worksh | ор | | | |
| • Design Thinking and Idea Lab | | | | |
| Course Objectives: | | | | |
| 1. To draw freehand sketches, drawing | s using dimensional an | d geometric const | raints | |
| 2. To understand basic structure of C | AD systems and their | use to create geo | metric models of simple | |
| engineering parts | | | | |
| 3. To create assemblies using CAD mod | leled components and s | standard parts ava | nilable online | |
| 4. To calculate surface areas, mass pro | perties of components a | and assemblies | | |
| 5. To understand data exchange stand | ards and translators for | r exporting data to | o various applications for | |
| simulations using modern computat | ional tools | ···· ··· ··· ··· ··· · · · · · · · · · | | |
| 6. To create engineering drawings, des | ign documentation and | use in manufactu | ring activities | |
| Course Outcomes: | | | | |
| After successful completion of the course, | learner will be able to | : | | |
| CO1. DRAW sketches using basic geometri | c entities including spli | ne curves | | |
| CO2. CREATE solid models using basic extr | rusion, revolve, sweep & | loft techniques | | |
| CO3. ASSEMBLE three and more compone
requirements of engineering produc | nts, modelled or import
:ts | ed geometries for | fulfilment of functional | |
| CO4. PERFORM mass property analysis, inc | luding creating and using | g a coordinate syste | em | |
| CO5. USE CAD model data for various C
printing, FEA, CFD, MBD, CAE, CA | AD based engineering a M, etc. | applications viz. pr | roduction drawings, 3D | |
| CO6. USE PMI & MBD approach for comm | unication | | | |
| | Course Contents | | | |
| Tutorial: | course contents | | | |
| 1. Study of drawing sheet layout Pri | nciples of Drawing an | d various IS Stan | dards & Conventions in | |
| Machine Drawing. Dimensioning pr | ictices - Terminology & | Basic Rules. Styles | s. Conventions. | |
| 2. Study and reading of Industrial | Drawings to unders | tand standard in | ndustrial practices viz. | |
| Dimensioning, GD&T, Surface finish, | welding symbols, etc. | | • | |
| (a) Machine Drawing, | | | | |
| (b) Production Drawing, | | | | |
| (c) Part Drawing, | | | | |
| (d) Assembly Drawing - (i) Assem | bly Drawing for Desig | n, (ii) Assembly | Drawing for Instruction | |
| Manuals, (iii) Exploded Assembl | y Drawing, (iv) Schema | tic Assembly | | |

3. Study of basic concepts of Geometric Dimensioning & Tolerances (GD&T) - (a) Terminology, Maximum and Minimum Material conditions, Features, Rules for GD&T, Datum Control (b) Adding GD&T to a

Design, Form Tolerances (c) Orientation Tolerances, Profile Tolerances (d) Location Tolerances, Run out Tolerances

- 4. Surface finish, Welding symbols
- 5. Study of basics of Design for Manufacturing (DFM), Design for Assembly and Dis-assembly and Design for Safety with suitable examples.

Practical (Any 5):

- 1. 2-D sketching with geometrical and dimensional constraints using CAD software (Min. 4 sketches including at least 5 dimensional and geometric constraints)
- 2. Solid & Surface modeling for simple mechanical components (Output file as Production drawing and Model Based Definition (MBD) for following engineering manufacturing practices (any two):
 - (i) Casting/forging
 - (ii) Plastic molding
 - (iii) Manufacturing using CNC machines (up to 4 axes)
 - (iv) Fabrication
 - (v) Sheet Metal
- 3. Calculation of raw material and machining/manufacturing/surface treatment/painting costs using CAD software
- 4. Assembly modeling (Output file as Assembly drawing and detailing) of the parts modeled in Practical assignment-2 using proper assembly constraint/mate conditions and generation of exploded view for assemblies like Couplings, Clutches, Gear Assemblies, Robot arms, Machine Tools, Automobile Components, Gear-Box, etc.
- 5. Build CAD models of existing components using Reverse Engineering approach
- 6. Assembly Modeling by importing parts/components from free online resources like CAD and Product development software websites, forums, blogs, etc.
- 7. Industrial visit

Real World Assignment -

CAD Modeling for the following:

- 1. Couplings
- 2. Robot manipulator assembly using 3 or more links
- 3. Power drives belt, chain or gear drives
- 4. Single plate, multi-plate clutch assemblies

Learning Resources

Text Books:

- 1. Engineering Drawing by N.D. Bhatt
- 2. Engineering Drawing and Design by David A. Madsen & David P. Madsen
- 3. "Computer Aided Design and Manufacturing" by Mikell P. Groover & Emory W. Zimmers
- 4. "Product Design and Development" by Karl T. Ulrich & Steven D. Eppinger

Reference Books:

- 1. ASME Y14.5 2018 Dimensioning and Tolerancing, American Society of Mechanical Engineers (ASME)
- 2. "Engineering Graphics Essentials" by Kirstie Plantenberg
- 3. "Product Realization: A Comprehensive Approach" by M. F. Ashby & K. Johnson

- 4. Bordegoni, Monica and Rizzi, Caterina, (2011), "Innovation in Product Design: From CAD to Virtual Prototyping", Springer, ISBN-13: 978-1447161875
- 5. Vukašinovic, Nikola and Duhovnik, Jože, (2019), "Advanced CAD Modeling: Explicit, Parametric, Free-Form CAD and Re-engineering", Springer, ISBN-13: 978-3030023980

MOOC / NPTEL/YouTube Links: -

- 1. https://youtu.be/Q9CXsOoy2Ls?si=JXNtNdxYq959y319
- 2. https://youtu.be/7oKBdfOEAw0?si=lRSp6ucfaRpVmHwz
- 3. https://youtu.be/hCiu-NERMy4?si=rxlvZ3ns5mj-b6AF
- 4. <u>https://youtu.be/EXq6Du0kwJg?si=WgaqoEp-RD0fpTLb</u>

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and reference. The instructor's manual needs to include prologue (about University/program/ institute/ department/foreword/ preface etc), copy of curriculum, conduction & Assessment guidelines, topics under consideration- concept, objectives, outcomes, set of typical applications/assignments/ guidelines, and references.

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by students in the form of an electronic journal only. Journal consists of prologue, Certificate, table of contents, and model/sketch of each assignment (Title, Objectives, Problem Statement, Outcomes, Software & Hardware requirements, Date of Completion as per applicability. Assessment grade/marks and assessor's sign, As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journals may be avoided. Use of Drive/Google classroom/Moodle platform containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Lab /TW Assessment

Continuous assessment of laboratory work is done based on overall performance and lab assignments performance of students. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness. **Guidelines for Laboratory Conduction**

List of laboratory assignments is provided below for reference. The instructor is expected to frame the assignments by understanding the prerequisites, technological aspects, utility and recent trends related to the topic. The assignment framing policy should address the average students and inclusive of an element to attract and promote the intelligent students. The instructor may set multiple sets of assignments and distribute them among batches of students. It is appreciated if the assignments are based on real world problems/applications. Encourage students for appropriate use of coding style, proper indentation and comments.

Use of open source software and recent versions is to be encouraged.

In addition to these, instructors may assign one real life application in the form of a mini-project. Based on the concepts learned. Instructors may also set one assignment or mini-project that is suitable to each branch beyond the scope of the syllabus.

Savitrib Second Year of Automat	ai Phule Pune Un ion & Robotics El	iversity ngineering (202	24 Pattern)
VEC282AUR: Data Sci	ence & Artificial	Intelligence La	aboratory
Teaching Scheme	Credit	Examination Scheme	
Practical: 02 Hours/Week	1	Practical:	50 Marks
Prerequisite Courses, if any:			
Linear Algebra, Probability, Statistic	s, Logical Reasoning		
Course Objectives:			
 To INTRODUCE students to supervi To GUIDE students in acquiring, visu To ENABLE students to perform feat To FACILITATE the development at To EXPOSE students to practical appengineering. 	sed, unsupervised, and ualizing, and analyzin ture extraction, selecti nd evaluation of classi plications of Markov p	d reinforcement lea g real-world datase on, and dimensior fication and regres rocesses, RL, GA	arning techniques. ets. nality reduction. ssion models. , and NN in
Course Outcomes:			
CO1. UNDERSTAND different machine CO2. ANALYZE and VISUALIZE datas CO3. APPLY feature engineering technic CO4. DEVELOP and EVALUATE classi CO5. IMPLEMENT Markov models, RL	earner will be able to: learning paradigms at sets for machine learni ques including PCA ar ification and regressio , GA, or NN for solvin	nd their use cases. ng applications. nd selection metho n models. ng real-world prob	ods. olems
Guidelines	for Practical's Cond	luction	
Instruction to students:			
1. The student shall complete the follo	owing activity as a Pra-	ctical's	
2. Students need to apply the compu	utational algorithms u	using suitable sof	tware / programming
language.	ulcomy Experiment 2 (o 7 to ha takan an	some data sat
3. Experiment 1, 2, 3, 6 & 7 are complete	ist of Experiments	o 7 to be taken on	same data set.
	ist of Experiments		
Experiment 01		-	
To study supervised/unsupervised/reinfor	cement learning app	roach.	
 Group customers by snopping behaving Classify emails as spam or not spam 	lor		
Practical Applications			
1. Email Filtering			
2. Autonomous Driving			
Experiment 02			
To acquire, visualize and analyze the data	set (from time-doma	ain/frequency-do	main/ etc.)
1. Comparison of engine vibration frequ	iencies	L	
2. Analyze motion sensor (acceleromete	er) data from a smartp	none	
1 Vibration Monitoring in Engines			
2. Voice Descertition			
2. Voice Recognition			
Experiment 03			
To extract features from given data set an	d establish training d	lata.	
1. Extract color histograms from image	S		

2. Extract word counts from movies articles	
2. Extract word counts from news articles Practical Applications	
1 Eace Decognition Systems	
2. Speech to Taxt Systems	
2. Speech-to-Text Systems	
Experiment 04	
To select relevant features using suitable technique	
1. Sales prediction 2. Use Require Feature Elimination (REE) with Logistic Regression	
2. Use Recursive reature Emmination (RFE) with Logistic Regression Practical Applications	
1 Medical Diagnosis	
2 Stock Price Prediction	
Experiment 05	
To use PCA for dimensionality reduction	
1. Apply PCA on air pollution data	
2. Use PCA on climate data to analyze trends	
Practical Applications	
1. Fault Detection in Manufacturing	
2. Handwriting Recognition	
Experiment 06	
classifier). 1. Classify different bank customers 2. Classify flower species Practical Applications 1. Credit Scoring 2. Image based Quality Inspection	
Z. mage-based Quanty inspection	
Experiment 07	
1. Predict house price 2. Predict student marks based on tests	
Practical Applications	
1. House Price Prediction	
2. Energy Demand Forecasting	
Experiment 08	
Markov process for modelling manufacturing processes. 1. Inventory Simulation 2. Machine Maintenance	
Practical Applications	
1. Predictive Maintenance	
2. Customer Behavior Modeling	
OR	
Experiment 09	
Reinforced Learning for optimizing engineering designs / Robot Guidance and Navigatio)n.
1. Optimize energy consumption	
2. Optimize robot movement	

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

Practical Applications	
1. Warehouse Robotics	
2. Optimize air conditioning systems	
Experiment 10	
GA for optimization of multi-dimensional function / path planning in robotics	
1. Use GA to plan shortest path	
2. Function Optimization	
Exemplars / Practical Applications	
1. Logistics & Route Optimization	
2. Antenna Design Optimization	
OR	
Experiment 11	
NN for parameter and model identification / tuning of Control Algorithms.	
1. Predict student grades	
2. Use NN for tuning or control	
Tractical Applications	
1. Autonomous Vehicle Control	
2. Industrial Process Modeling	
Learning Resources	
Text Books:	•
1. Deisenroth, Faisal, Ong, Mathematics for Machine Learning, Cambridge University Press, 20	20.
2. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.	, рі
5. Farag Kukarin and Fracin Josin, Artificial intelligence – Bunding intelligent Systems learning Pyt I td ISBN – 978-81-203-5046-5 2015	, гі
4 Stuart Russell and Peter Norvig (1995) "Artificial Intelligence: A Modern Approach" Third e	ditio
Pearson, 2003.	unno
Reference Books:	
1. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global	201
2. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.	
3. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering	CR
Press, 2021.	
4. Zsolt Nagy - Artificial Intelligence and Machine Learning Fundamentals-Apress (2018)	
5. Artificial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH	
MOOC / NPTEL / YouTube Links· -	
1. <u>http://nptel.ac.in/courses/111101003</u> /	
1. <u>http://nptel.ac.in/courses/106/106/106106202/</u> 2. <u>https://nptel.ac.in/courses/106/106/106106202/</u>	
1. http://nptel.ac.in/courses/111101003/ 2. https://nptel.ac.in/courses/106/106/106106202/ 3. https://nptel.ac.in/courses/112/103/112103280/	

Savitribai Phule Pune University Second Year of Automation & Robotics Engineering (2024 Pattern)					
	AEC283AUR	: Modern Indian	Language: 02		,
	Teaching Scheme	Credit	Examina	tion Sche	eme
Practical	: 02 Hours/Week	•	CCE:	15 Ma	rks
Tutorial:	: 01 Hours/Week	2	End-Semester:	35 Ma	rks
 अभ्यासक्रमाचे उद्दिष्ट : १. प्रगत भाषिक कौशल्यांची क्षमता विकसित करणे. २. प्रसारमाध्यमांतील संज्ञापनातील स्वरूप आणि स्थान स्पष्ट करणे. ३. व्यक्तिमत्व विकास आणि भाषा यांच्यातील सहसंबंध स्पष्ट करणे. ४. लोकशाहीतील जीवनव्यवहार आणि प्रसारमाध्यमे यांचे परस्पर संबंध स्पष्ट करणे. ५. प्रसारमाध्यमांसाठी लेखनक्षमता विकसित करणे. 					
Unit I and	П	course contents			
घटक	तपशील			श्रेयांक	तासिका
<i>१</i> .	१. भाषा आणि व्यक्तिमत्त्व २. लोकशाहीतील जीवनव्य	विकास : सहसंबंध वहार आणि प्रसारग	माध्यमे	۶	१५
ર.	प्रसारमाध्यमांसाठी लेखन १. वृत्तपत्रासाठी बातमीलेखन आणि मुद्रितशोधन २. नभोवाणीसाठी भाषणाचे संहितालेखन ३. दूरचित्रवाणीसाठी माहितीपटासाठी संहितालेखन				१५
Unit III a	nd IV				
घटक	तपशील			श्रेयांक	तासिका
સ.	१. भाषा, जीवन व्यवहार आणि २. नवमाध्यमे आणि समाजमाध ३. नवमाध्यमे आणि समाजमाध परिणाम	ा नवमाध्यमे, समाजम ध्यमांचे प्रकार : ब्लॉग, यमांविषयक साक्षरता,	ाध्यमे फेसबुक, ट्विटर , दक्षता, वापर आणि	१	१५
૪.	१. वेबसाईट आणि ब्लॉग, f २. व्यावसायिक पत्रव्यवहार	ट्वेटरसाठी लेखन र		१	१५
Learning Resources					
संदर्भ ग्रंथ १. सायबर २. उपयोगि ३. ओळख ४. संगणक ५. इंटरनेट ६. व्यावह ७. आधुनि	Г : र संस्कृती, डॉ. रमेश वरखेडे जेत मराठी, संपादक डॉ. केतकी ग माहिती तंत्रज्ञानाची, टिमोथी जे 5, अच्युत गोडबोले, मौज प्रकाशन र, डॉ. प्रबोध चौबे, मनोरमा प्रका गरिक मराठी, डॉ. ल. रा. नसीराब क माहिती तंत्रज्ञानाच्या विश्वात,	मोडक, संतोष शेणई, स् ∵ ओ. लिअरी ा, मुंबई शन, मुंबई गदकर, फडके प्रकाशन , शिक्रापुरकर दीपक, म्	गुजाता शेणई ; कोल्हापूर गराठे उज्ज्वल, उत्कर्ष	प्रकाशन,	पुणे

Guidelines for Ability Enhancement Courses - Modern Indian Language (Marathi)

Term Work Evaluation

- 1. Subject teacher should frame minimum 08 assignments-based covering on all four units.
- 2. They can identify students depending upon the degree of difficulty in understanding the Marathi language and frame the assignments accordingly.

Suggested List of Assignments (Marathi/Hindi):

- 1. "Samvad Sadara Kara" (Present a Dialogue): Role-Playing Everyday Scenarios: Objective is to practice conversational Marathi, understanding social cues. In pairs or small groups, students create and perform a short dialogue based on a given scenario.
- 2. Read a daily Newspapers column (Sports, political, finance, editorial, education, international news, etc.) in the daily Marathi newspapers, summarize and present in the practical. A summary should be added as part of the journal.
- 3. Creative writing: Write blogs and posts on social media upto 200 words on recent development in their field of study
- 4. Mala He Sangayche Aahe" (I Want to Say This): Students show the object describe it to the class in Marathi. They should mention its color, size, use, why it's important to them, etc.

5. Professional letter / report writing

- a. Write a letter to the principal/director for organizing NSS camp in nearby village. Preparation of the budget, permission letters and report submission in the University
- b. Write a letter for internship sponsorship to any organization.
- 6. Book Review Students are expected to read any novel, fiction or literature book of their choice and write a review on post it on social media of their choice.
- 7. Participation in Competitions (in college/outside the college) debate, declamation, elocution A Report should be submitted
- 8. Group Activity: Road show, skit play, one-act play
- **9. Participation in One-Act-Play -** Participation in Purushottam karandam, Firodia karandak, Dajikaka Gadgil Karandak and Shreetej Karandak.
- **10. Marathi Film Review** Watch the Marathi movie widely available on an OTT (Over-The-Top) platform, broadcaster in Television or available on YouTube and write a review.

Second Vear of Automat	ai Phule Pune Un	iversity gineering (2024	Pattern)
Second Year of Automation & Robotics Engineering (2024 Pattern)			
HSSWI284AUR: Engineer	Credit	Examination	iagement
Theorem 01 Hours/Week	Credit		50 Mortus
Incory: UI Hours/week	1	CCE:	
Practical: NA		Enu-Semester:	NA
 Knowledge of company Operation Accounting and Budgeting, Analytic 	s, Design and Manufactical and Logical Thinl	cturing, Basic princij king	bles and practices of
Course Objectives:			
1. To INTRODUCE the fundamental	principles of econom	ics and finance relev	ant to core engineering
2 To DEVELOP an understanding of	basic financial manag	ement concents and e	enhance analytical skills
for interpreting financial statements	S.	ement concepts and v	sindice analytical skins
3. To FAMILIARIZE students with k	ey financial terminolo	gies and enable then	n to prepare and analyze
various financial statements.	4		
4. TO PROVIDE insights into the bud mechanisms	getting process, includi	ng formulation, impl	ementation, and control
5. To EXPLORE the financial dimensi	sions of national and in	nternational business	environments and their
implications on engineering decision	ons.		
Course Outcomes:			
After successful completion of the course,	learner will be able to	: noncont frandomontal	and an and an and
the demand-supply framework	of the business environ	innent, fundamentar	economic concepts, and
CO2: COMPREHEND accounting princip	oles and effectively Al	NALYSE financial s	tatements through ratio
analysis.	-		-
CO3: INTERPRET key financial terms a	nd ratios, and compet	ently PREPARE va	rious types of financial
CO4. DEVELOP and SELECT approp	riate budgeting techn	iques understand l	nudgetary control and
EVALUATE the influence of government	policies, taxation, and	inflation on financia	l decision-making.
CO5: UNDERSTAND the structure and	functioning of nationa	al and international	trade systems and their
financial implications			
	Course Contents		
Unit I Introduction to Business Ed	conomics and Finance	e	(06 Hours)
Business Economics Basics: Definiti	on, scope, and rol	e in engineering,	Microeconomics vs.
forces	irket Equilibrium: Lav	ws of defination & su	ppiy, elasticity, market
Cost Concepts & Decision Making: Fi	xed, variable, margin	al, sunk costs, Brea	ak-even analysis, profit
maximization.	-		
Basics of Financial Management: Finan	ncial statements (Bala	nce Sheet, Income	Statement, Cash Flow),
Financial planning & decision-making for Time Value of Money (TVM): Present &	engineers. future value simple	& compound interes	t Business & Financial
Decisions in Engineering: Capital investor	nent, risk assessment,	Sources of financin	g (debt, equity, venture
capital).			
Real World Assignment (Any One)			
1 . Case study on micro economics busines	s environment.		
2. Analyze demand and supply fluctuation	s for any business of y	our choice and Prop	ose pricing or inventory
strategies based on findings.			
5. Understand and apply break-even analys	sis to a real-world busi	ness scenario.	

Evennlars /	Practical Annlications	
Market Struct	ture Analysis for Business Decision Making Budgeting and Financial Plan	ning Understanding
Economic Inc	licators for Investment Decisions.	, enderstanding
Unit II	Cost Accounting	(05 Hours)
Introduction	• Importance and difference between cost and financial accounting	(05 110013)
Cost Account	ting: Types of costs: Fixed variable direct indirect	
Costing mot	hada: Joh agating process agating Prock even analysis & hudgating	a for asst control
Costing me	Applications: Cost actimation project budgeting financial decision making	ig for cost control.
Engineering Dool World	Applications. Cost estimation, project budgeting, infancial decision-maxin	lg
1 List on	Assignment	al part
1. List and 2. Calcula	to the cost per unit by considering material cost labor, and overheads of any	machanical alamant
2. Calcula	ate the total cost to produce 500 units	inechanical element.
3 For th	e nearby industry using fixed and variable costs, calculate the break	even point for their
5. For the	n setup for any one item and suggest how many items must be sold to cover	r all costs
Fromplars /	Proceeding one nem and suggest now many nems must be sold to cover	
All kind of i	r factical Applications	roduct project based
costing in Fl	PC industries	roduci, projeci based
Unit III	Financial Accounting	(05 Hours)
Real World A 1. Pre 2. Cho 3. Pre Exemplars /	Assignment pare financial statement of any organization. pose a company or firm and analyze its latest financial statements. pare a balance sheet for any engineering organization. Practical Applications	ming of a d G
Engin	eering industries, Banking sectors, Oil Gas industries, NGO for proper plat	nning of cash flow.
Unit IV	Budget and Budgetary Control	(06 Hours)
Types of bud Budgetary (implementation Engineering allocation in (Inflation on F Real World (1. Pr 2. He sy 3. He fin Exemplars / To pre	 gets: Fixed, flexible, zero-based, capital, and operational budgets. Control: Concept and objectives of budgetary control. Steps in budgeton. Variance analysis: Comparing actual vs. budgeted performance. Applications: Budgeting in manufacturing and project management. Cost engineering firms. Taxes and Financial Planning, Impact of government perinancial Management. Assignment (Any One) epare and Interpret Budget and Standard Costs for any real business. bw can technology improve budget preparation and control? Discuss to stems, or budgeting software. bw can businesses run against inflation and manage tax burdens efficiencial strategies. Practical Applications 	get preparation and control and resource olicies, Taxation and ols like Excel, ERP ently? Suggest your Government sectors,
Sales	and Operating Budgets for Retail Sector	

Unit V	National and International Business and Finance	(06 Hours)
National Inco (Government globalization international	ome (National Income Accounting – GDP, GNP, Real and Nominal Income (National Income Accounting – GDP, GNP, Real and Nominal Income Revenue, Expenditure and Financing). Concept of globalization, concept of international business and motives, international trade, institution business, the significance of foreign trade policy, export-import procedures.	come) Fiscal Policy factors influencing tional framework in
Real World	Assignment (Any One)	
1. Choose	e any industry sector and research how GDP growth or decline has affected	investments and job
oppor	tunities in this sector.	
2. Visit	an official economic data website (e.g., World Bank, IMF, National Burea	au of Statistics) and
collec	t the latest GDP and GNP data of our country. Compare the values and ex	xplain your findings
about 2 Discu	the country's economy.	
5. Discu	Practical Applications	
Natio	r factical Applications	DP National Stock
Excha	nges. Public Infrastructure Projects and International Financing is needed	in Foreign Direct
Invest	ment (FDI). International Trade Financing. Global Financial Institution.	
	Learning Resources	
Text Books:		
1. Hay, 1	Donald A. and Derek J. Morris. Industrial Economics and Organization: Th	neory and Evidence,
2nd E	dition (Oxford: Oxford University Press), 1991.	
2. Lall, S 3 Scher	er F M and D Ross Industrial Market Structure and Economic Perfor	mance 3rd Edition
(Hous	ton: Mifflin), 1990.	indice, sta Edition
4. Finan	cial Accounting", Dr. Kaustubh Sontakke [Himalaya Publishing House]	
5. Chano	Ira, Prasanna (2004). Financial Management: Theory and Practice. New De	lhi: TATA McGraw
Hill Reference B	ooks.	
	nting Theory & Practice Prof Jawahar I al [Himalaya Publishing House] 79 Page	
2. Brearl	ey, Richard A. and Myers, Stewart C. (1988). "Principles of Corporate Finance", 1	New Delhi: McGraw-
Hil		
3. Engine	ering Economics, Tara Chand, Nem Chand and Brothers, Roorkee	d
5. Mecha	nical Estimating and Costing, T. R. Banga and S. C. Sharma, Khanna Publishers, I	a. Delhi
6. Indust Delhi	rial Organization and Engineering Economics, T. R. Banga and S. C. Sharma, Kh	anna Publishers, New
7. Mecha Delhi	nical Estimating and Costing, D. Kannappan et al., Tata McGraw Hill Publishing	g Company Ltd., New
8. A Tex Delhi	t Book of Mechanical Estimating and Costing, O. P. Khanna, Dhanpat Rai Public	cations Pvt. Ltd., New
9. Indust	rial Engineering and Management, O. P. Khanna, Dhanpat Rai and Sons, New Dell	hi
10. Financ	1al Management, I. M. Pandey, Vikas Publishing House Pvt. Ltd., New Delhi pering Economics, James J. Riggs, David D. Bedworth and Sabah J. Randhay	va Tata McGrawHill
Publis	ning Co. Ltd., New Delhi	
12. Engine	ering Economy, Paul DeGarmo, Macmillan International Inc., New York	
MOOC / NF	'TEL/ YouTube Links: -	
1. <u>https://c</u>	nlinecourses.nptel.ac.in/noc22_ma44/	
2. <u>https://c</u>	nlinecourses.nptel.ac.in/noc22_hs72/	
	nlinecourses antel as in/noo22 mg62/	

Savitrib Second Year of Automati	ai Phule Pune Un on & Robotics Fi	iversity 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990	ttern)
VEC285AUR: Environmental Science and Sustainable Development			
Teaching Scheme	Credit	Examination	Scheme
Theory: 02 Hours/Week	•	CCE: 1	5 Marks
Practical:	2	End-Semester: 3	5 Marks
 Prerequisite Courses, if any: Knowledge of Chemistry, Biolog 	y and Earth Sciences		
 Course Objectives: To INTRODUCE students to the relationship between natural system its significance in the day today lites its significance in the day today lites are source depletion, deforestation, To FOSTER critical thinking skill resource depletion, deforestation, To STUDY sustainable practices emphasizing the importance of bather of the role of rear promoting sustainability. To EVALUATE the role of rear promoting sustainability. To ENCOURAGE students to an sustainable development problem Course Outcomes: After successful completion of the course CO.1 To UNDERSTAND and EVALUATE resources, assess the impact of air pointeractions between socio-economic system interactions between socio-economic system interactions between social health, enhance CO.3 To IDENTIFY various water source APPLY sustainable water management preeds. CO.4 To UNDERSTAND the principles of challenges, and APPLY practical sustaination for the principles of APPLY environmentally responsible solition renewable energy sources to promote sustainable sustain	e fundamental conce ems and human activi fe. s regarding environme and habitat destruction in energy use, agricul- ilancing development newable energy, gree oply their knowledge s, through case studie e, learner will be able TE the interdependent llution and ecologicatems. degradation and apply e agricultural production es, ANALYZE issues practices to support en- of sustainability, EVA ability practices to pro- sustainable habitat co- utions such as green tainable living and re	pts of environmental sc ties, concept of sustainal ental issues such as clima on. ture, waste management, with environmental pres n technologies, and con to real-world environm ts, projects, and fieldwor to: ce between environment, al footprints, and ANA y effective soil conservations related to water availab nvironmental conservation LUATE environmental, pomote responsible resoun lesign and sustainable of buildings, energy-efficie duce ecological impact.	eience, including the ble development and ate change, pollution, , and urban planning, servation. nservation efforts in ental challenges and k. , ecology, and natural LYZE the dynamic ion and management nable land use. ility and quality, and on and meet societal social, and economic rce use. energy systems, and ent technologies, and
	Course Contents		
Unit I Introduction to ESD	Ain pollution E 1	ogical factorist Inter	(06 Hours)
Environment, ecology, natural resources	, Air pollution, Ecol	ogical footprint, Interact	tions between socio-
economic systems and eco-systems, Hum	an health and the env	ronment	
Real World Assignment			
1) Weather survey of your region of la	ast 10 years		
2) Air pollution and its effect on hum	an health.		
Exemplars / Practical Applications 1) Air purifiers 2) Air quality index indicators			

Second Year Automation & Robotics (2024 Pattern) - Faculty of Science & Technology

Unit II	Soil Conservation and Management	(06 Hours)
Types and ca	uses of soil degradation; Losses of soil moisture and its regulation, Nutrien	t depletion; impact
of soil degrad	ation on agriculture and food production, toxic organic chemicals, and org	ganic contaminants
in soils, Ferti	izers and fertilizer management, Recycling of soil nutrients.	
Inorganic and	l organic components of soils. Biogeochemical cycles - nitrogen, carbo	n, phosphorus and
sulphur.		
Real World	Assignment	
1. Analy	sis of soil texture, Ph and organic matter content	
2. Effect	of chemical fertilizers on soil biogeochemical cycles and on human health	
Examplers /	Practical Applications	
1 Cont	nur farming	
1. Conto	forming	
2. Suip	nonning ral fartilizars	
Unit III	Water Sources and Management	(06 Hours)
		(00 110013)
Hydrological	cycle and water resources- surface, ground, desalination, Water pollution,	Integrated water
resources man	hagement, Usage and efficiency	
Real World	Assignment	
Development	of greywater recycling system	
Exemplars /	Practical Applications	
1. Water	source management in desert area	
2. Recyc	ling and reuse of waste water	
3. Rainw	/ater harvesting	
Unit IV	Sustainability and Sustainability Practices	(06 Hours)
Unit IV Sustainability	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su	(06 Hours) stainability- from
Unit IV Sustainability unsustainabil	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror	(06 Hours) Istainability- from Inmental issues and
Unit IV Sustainability unsustainabil possible solu	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local environ- tions-case studies. Zero waste concept, ISO 14000 Series, Material Life	(06 Hours) stainability- from mental issues and cycle assessment,
Unit IV Sustainability unsustainabili possible solu Environmenta	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment.	(06 Hours) Istainability- from Immental issues and cycle assessment,
Unit IV Sustainability unsustainabili possible solu Environmenta Real World	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local environ- tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment	(06 Hours) stainability- from mental issues and cycle assessment,
Unit IV Sustainability unsustainabili possible solu Environmenta Real World A 1. Effect	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health	(06 Hours) estainability- from mental issues and cycle assessment,
Unit IV Sustainability unsustainabili possible solu Environmenta Real World A 1. Effect 2. Indiar	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local environ- tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development.	(06 Hours) Istainability- from Immental issues and cycle assessment,
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars /	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications	(06 Hours) estainability- from emental issues and cycle assessment,
Unit IV Sustainability unsustainabili possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens	(06 Hours) Istainability- from Immental issues and cycle assessment,
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a Unit V	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours)
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars / Green roofs a Unit V Sustainable h	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a Unit V Sustainable h energy: Non-	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable transconventional Sources, Energy Cycles- carbon cycle, emission and sequestra	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars / Green roofs a Unit V Sustainable h energy: Non-a	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of suity to sustainability, Climate change- Global, Regional and local environtions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable transconventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a Unit V Sustainable h energy: Non- Real World A Calculation o	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of suity to sustainability, Climate change- Global, Regional and local environtions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable transconventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print.	(06 Hours) Istainability- from mental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars / Green roofs a Unit V Sustainable h energy: Non-a Real World A Calculation o Exemplars /	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local environ tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran conventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a Unit V Sustainable h energy: Non- Real World A Calculation o Exemplars / Energy effici	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of suity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran conventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications ent buildings	(06 Hours) Istainability- from mental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a Unit V Sustainable h energy: Non- Real World A Calculation o Exemplars / Energy effici	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran conventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications ent buildings	(06 Hours) Istainability- from imental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars / Green roofs a Unit V Sustainable h energy: Non- Real World A Calculation o Exemplars / Energy efficient	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local environ tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran conventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications ent buildings	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars / Green roofs a Unit V Sustainable h energy: Non- Real World A Calculation o Exemplars / Energy efficient Text Books: 1. P. D.	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran conventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications ent buildings Sharma; Ecology and Environment; Volume 22 of Popular Biology Te- pations 2007	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable ation
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indiar Exemplars / Green roofs a Unit V Sustainable h energy: Non Real World A Calculation o Exemplars / Energy effici Text Books: 1. P. D. Public 2. D. D.	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of suity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable transconventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications ent buildings Learning Resources Sharma; Ecology and Environment; Volume 22 of Popular Biology Terations, 2007 Mishra-Eundamental of Environmental Studies, S Chand & Co I td (1 December 2007)	(06 Hours) Istainability- from Immental issues and cycle assessment, (06 Hours) Isports, Sustainable ation ext Books Rastogi Imber 2010)
Unit IV Sustainability unsustainability possible solu Environmenta Real World A 1. Effect 2. Indian Exemplars / Green roofs a Unit V Sustainable h energy: Non- Real World A Calculation o Exemplars / Energy effici Text Books: 1. P. D. Public 2. D.D. I 3. M. Da	Sustainability and Sustainability Practices - concept, needs and challenges-economic, social, Aspects of su ity to sustainability, Climate change- Global, Regional and local enviror tions-case studies. Zero waste concept, ISO 14000 Series, Material Life al Impact Assessment. Assignment of global warming on human health a government policies for sustainable development. Practical Applications and Vertical Gardens Sustainable Habitat and Sustainable Energy abitat: Green buildings, Green materials, Energy efficiency, Sustainable tran- conventional Sources, Energy Cycles- carbon cycle, emission and sequestra Assignment f carbon foot print. Practical Applications ent buildings Elearning Resources Sharma; Ecology and Environment; Volume 22 of Popular Biology To rations, 2007 Mishra-Fundamental of Environmental Studies, S Chand & Co Ltd (1 Dece yal- Renewable Energy; Environment and Development, Konark Pub.Pvt.I	(06 Hours) Istainability- from mental issues and cycle assessment, (06 Hours) (06 Hours) Isports, Sustainable ation ext Books Rastogi mber 2010). Ltd.

5.	Ambasht R.S.; Environment and Pollution: An Ecological Approach, CBS Publishers & Distributors;
	1st Ed. edition 2014

Reference Books:

- 1. Stanley E. Manahan; Fundamentals of Environmental Chemistry; Publisher: CRC Press 1993
- 2. E.D. Enger, B. E. Smith; Environmental Sciences-A study of Inter relationships, WCB Publication.
- 3. Kathy Wilson Peacock; Natural Resources and Sustainable Development.
- 4. Elizabeth Berner, Robert Berner; Global Enviroment Water, Air, and Geochemical Cycles, Princeton University Press; 2nd Revised edition edition 2012.
- 5. Bruce Rittman, Perry L. McCarty. Environmental Biotechnology: Principles and Applications, 2nd Edition, McGraw-Hill, 2000.
- 6. Andrew Dessler, Introduction to Modern Climate Change, 2nd Edition, Cambridge University Press, 2015.
- 7. Bruce Glavovic, Mick Kelly, Robert Kay, Ailbhe Travers, Climate Change and the Coast: Building Resilient Communities, CRC Press, 2015.

MOOC / NPTEL/ YouTube Links: -

- 1. Environmental and Sustainability Studies Raquel Friedmann YouTube
- 2. Lecture 1 Sustainable Development Concepts YouTube
- 3. <u>Climate Change A Short Film [4K]</u>

Savitribai Phule Pune University, Pune

Maharashtra, India

Task Force for Curriculum Design and Development

Dr. P. A. Patil Dr. Girish Modak Dr. J. A. Hole Dr. Niranjan Kolhe Dr. V. N. Chougule Dr. Kushare Prashant Dr. Mohan Khond Dr. Shiv Sai Dixit Dr. Ajit Bhosale Dr. Amar Pandhare Dr. Narendra Deore Dr. A. B. Gawand Dr. Ravindra Navthar Dr. Vishnu Wakchaure Dr. S. B. Zope Dr. Niyaj Shikalgar

Team Members for Course Design

Dr. A. C. Mitra Dr. V. S. Galgali Mr. Parag Bute Dr. Ravi Sinha Mrs. Kirti Shinde Mr. V. D. Rajput Dr. S. A. Ansari Dr. P. A. Narwade Dr. N. S. Mujumdar Mr. Sushil Walunj Dr Anjali Joshi Mr. Vivek P. Patekar Mr. Pradip Karale Mr. Kalhapure R. E. Mr. Karamkar B. P. Mr. Ravindra Dispute Mr. K. M. Garse Mrs. Gayatri S. Patil

Dr. K. A. Mahajan Mr. A. N. Gowardipe Mr. Mahesh Raut Dr. Rupesh Kumar Mr. A. A. Chaugule Dr. V. V. Edake Dr. Kaveri A. Katakec Dr. Pradnya Kosbe Dr. Dipak S. Bajaj Dr. N. N Gotkhindikar Prof. Vilas M. Mhaske Mr. R. R. Mali Mr. G. P. Lohar Mr. Y. S. Khairnar Dr. A. Baipadithaya Dr Ajit Dharma Mr. Srikanth Karankoti

Dr. Lalit Patil Mr. B. T. Tagad Dr. Vikash Agrawal Mr. Yashraj Patil Mrs. Sonali Narsale Dr. S. G. Kolgiri Dr. Rahul R. Chakule Dr. Ajeet Kumar Dr. M. M Rane Dr. S. V. Chaitanya Mr. Pawar D. S. Mr. G. T. Sawant Mr. A. G. Habib Mr. Sagar Suresh Dol Mr. B. K. Varpe Dr Prashant Nehe Mr. R. K. Nanwatkar

Dr. Vikas Singh Panwar Mrs. Gauri Kulkarni Dr. Swaroopkumar Mandal Mrs. Indira Ghosh-Dastidar Dr. Zaheer Abbas Shaikh Dr. Jagannath Gawande Dr. Mangesh D. Shende Dr. Dileep More Dr Amol Bhausaheb Patil Dr. D. P. Kshirsagar Mr. Dhammadip A. Kamble Mr. Vaibhav Bansode Mr. Rajkumar Panchal Mr. Chetanraj Patil Mr. C. K. Bhosale Prof. Mahesh C. Shinde Mr. Susheel Walunj

Industrial Advisors

Dr. Pranav Lad Mr. Ashish Kulkarni Mr. Shirish Dixit Mr. Adeep Shinde Mr. Sachin Bhong Mr. Ashish Kalambe Mr. Nandkumar Wandre

Compiled by:

Dr. Vikas N. Chougule

Member, Board of Studies - Mechanical & Automobile Engineering

Savitribai Phule Pune University, Pune

<u>Chairman</u>

Dr. Pradeep A. Patil

Chairman, Board of Studies - Mechanical & Automobile Engineering

Savitribai Phule Pune University, Pune

Dean

Dr. Pramod Patil Dean – Science and Technology Savitribai Phule Pune University, Pune

* * * * *

Index

Artificial Intelligence and Machine Learning, 70 Community Engagement activity or Field Project, 46 Curriculum Structure - Semester III, 10 Curriculum Structure - Semester IV, 11 Data Science & Artificial Intelligence Laboratory, 76 Electric Drives for Automation Systems, 58 Engineering Economics & Financial Management, 81 Engineering Mathematics-III, 28 Entrepreneurship Development and Innovation, 37 Environmental Science & Sustainable Development, 84 General Rules, 8

Industrial Electronics & Controls, 18 Industrial Electronics & Controls Laboratory, 31

Kinematics of Machines, 54 Kinematics of Machines Laboratory, 66

Manufacturing Technology, 22 Material Testing and Characterization Laboratory, 25 Materials and Machine Elements, 14 Modern Indian Langauge: 02, 79

Nomenclature, 3

Preface by Board of Studies, 4 Principles of Robotics, 50 Product Develoment Laboratory, 73 Program Educational Objectives, 5 Program Outcomes, 6 Program Specific Objectives, 5

Robots & Drive System Laboratory, 62

Semester III, 13 Semester IV, 49

Universal Human Values, 41

Workshop Practices, 34